

COMBIVERT F6

F6ハウジング8主回路取扱説明書

Translation of the original manual Document 20120983 JP 03

- PRE-SERIES -

概要

本書ならびに該当するハードウェアとソフトウェアは、KEB Automation KGによって開発されました。同社は、ドキュメント、ソフトウェア、ハードウェアの制作に万全を期していますが、この仕様でお客様の求める効果を上げられることを保証するものではありません。KEB Automation KGは、第三者に通知することなく仕様を変更する権利を留保します。

安全に関するシンボルマーク

操作の中には、設置中、使用中、またはその後に危険を引き起こす可能性のあるものがあります。本書では、このような操作に対し、安全上のシンボルマークを記載しています。シンボルマークのある記述は、安全および重要事項を記載していますので、必ず守ってください。

A DANGER

安全上の注意事項を守らない場合、死亡または重傷を受ける危険な状況。

WARNING

安全上の注意事項を守らない場合、死亡または重傷を受ける可能性が想定される場合。

A CAUTION

安全上の注意事項を守らない場合、中程度の傷害や軽傷を受ける可能性が想定される場合。

NOTICE

取り扱いを誤った場合、製品の損傷および物的損害の発生が想定される場合。

制限

この記述は、特定の状況が要求事項に対して正しく実行されているか、または、結果が特定の有効範囲に制限される場合に使用されます。

危険、注意には該当しないが、お客様に守っていただきたい事項を、関連する個所に併記します。

その他のシンボル

- ► この矢印でアクションステップを開始します。
- •/- 項目は黒点またはハイフンでマークされます。
- => 別のチャプターまたは別のページへの相互参照。

その他のドキュメントは、こちらを参照してください。 www.keb.de/service/downloads

法令およびガイドライン

KEB Automation KGでは、EU適合宣言書とインバータ銘板へのCEマーク記載で、基本的な安全要件に準拠していることを確認しています。

EU適合宣言書は、必要に応じて、当社Webサイトからダウンロードできます。

保証と責任

本製品に関する設計、材料、または製造上の欠陥に対する保証と責任は、一般的な販売条件に記載されています。

一般的な販売条件については、下記を参照してください。 www.keb.de/terms-and-conditions

それ以上の合意または仕様については、書面による確認が必要です。

サポート

複数のアプリケーションに対して、想定できるすべての状況を考慮しているわけではありません。さらに詳しい情報、または本書に記載されていない問題が発生した場合は、KEB Automation KGまたはKEB Automation KGの代理店までご連絡ください。

当社製品の故障に起因する貴社あるいは貴社顧客など、当社製品以外の損害、その他業務等に対する保証は当社の保証範囲外となります。

本書に記載されている技術的な内容およびアプリケーションに関するアドバイスは、テストを通じて使用目的についての知識と情報の範囲内で提供されます。ただし、これらは非公式の情報として適用され、特に技術的な変更を加える権利を明示的に保留します。これは第三者の産業財産権の侵害にも適用されます。使用目的への適合性に関する弊社製品の選択は、一般的にお客様側にあります。

特に設定内容を変更された場合は、一部の変更のみであっても、ハードウェア、ソフトウェア共に完全な動作確認を行う必要があります。

著作権

お客様は、取扱説明書ならびに付随する資料や機器を本製品の運転のために使用することができます。著作権については、KEB Automation KGになります。

このKEB Automation KG製品またはその一部には、無料またはオープンソースソフトウェアを含むサードパーティソフトウェアが含まれている場合があります。該当する場合、このソフトウェアのライセンス条項は取扱説明書に含まれています。取扱説明書は弊社Webサイトから無料でダウンロードするか、KEB Automation KGへお問い合わせください。その他の文字商標やロゴは、それぞれの所有者の商標(TM)または登録商標(®)です。

目次

	概要		3
		安全に関するシンボルマーク	
		その他のシンボル	
		保証と責任	4
		サポート	
		著作権	4
	目次		5
		欠	
	表目》	欠	ç
	用語第	\{	10
	インバ	ドータ/制御盤の規格	12
		インバータ製品規格	12
		インバータ基本規格	
		インバータ使用環境規格	13
4	<u></u>	として決立中で	<i>A</i> 4
1	女王	と上の注意事項	14
	1.1 🕏	寸象読者	14
	1.2 輔	俞送、保管、適切な取り扱い	14
	1.3 討	殳置	15
	1.4 酉	己線	16
		1.4.1 EMC準拠の設置	17
		1.4.2 電圧テスト	17
		1.4.3 絶縁測定	17
		⊡動と操作	
		守	
		§理	
	1.8 序	· · · · · · · · · · · · · · · · · · ·	20
2	朱リ_⊏	2の特徴	21
_	衣口	品の特徴	
	2.1 月	月途	
		2.1.1 残存リスク	
	2.2 ₺	目的外の使用	21
		뷚品概要	
		キームプレートの説明	
	2.5 鈴	名板	
		2.5.1 設定可能なオプション	26
2	士士	肓データ	27
J			
	3.1 追	重転条件	
		3.1.1 周囲環境条件	27
		3.1.2 振動	28

	3.1.3 汚染	28
	3.1.4 電気的動作条件	29
	3.1.4.1 ユニット分類	29
	3.1.4.2 電磁両立性	29
	3.2 400Vクラスのユニットデータ	30
	3.2.1 400Vユニットの概要	30
	3.2.2 400Vユニットの電圧と周波数	31
	3.2.2.1 モータ印加電圧の計算例:	32
	3.2.3 入出力電流/過負荷	32
	3.2.3.1 過負荷特性 (OL)	33
	3.2.3.2 スイッチング周波数毎の最大出力電流 (OL2)	35
	3.2.4 定格運転中の電力損失	41
	3.2.5 インバータのヒューズ保護	42
	3.3 一般的な電気データ	
	3.3.1 スイッチング周波数と温度	43
	3.3.1.1 空冷式標準ヒートシンクのスイッチング周波数と温度	43
	3.3.1.2 水冷式標準ヒートシンクのスイッチング周波数と温度	43
	3.3.2 主回路/制動トランジスタ機能	44
	3.3.3 ヒートシンク取付制動抵抗器	
	3.3.4 ファン	46
	3.3.4.1 ファンのオン/オフ動作	46
	3.3.4.2 ファンのオン/オフ温度	47
	3.3.4.3 ファンの冷却方向	47
	3.4 外形寸法と概略重量	48
	3.4.1 空冷式標準ヒートシンク	48
	3.4.2 水冷式標準ヒートシンク	49
	3.4.3 空冷式スルーマウントヒートシンク IP20、IP54対応	50
	3.4.4 水冷式スルーマウントヒートシンク IP20、IP54対応	51
	3.4.5 スルーマウントヒートシンクIP54対応の取付	52
	3.4.6 制御盤の取付	53
	3.4.6.1 フットブラケット付きインバータ	53
	3.4.6.2 設置手順	54
	3.4.6.3 取り付けスペース	55
4	設置と接続	57
•		
	4.1 COMBIVERT F6の概要4.2 主回路の接続	
	4.2 王四路の接続	
	4.2.1 电冰供和の接続4.2.1.1 400Vユニットの主回路端子台X1A	
	4.2.2 保護接地と機能接地	
	4.2.2 休き接地と機能接地	
	4.2.2.1 休喪按地	
	4.2.2.2	02

	4.2.3 AC主電源接続	
	4.2.3.1 三相AC電源	
	4.2.3.2 電源ケーブル	
	4.2.4 DC電源接続	
	4.2.4.1 端子台X1A DC電源接続	
	4.2.5 モータ接続	
	4.2.5.1 モータの配線	
	4.2.5.2 端子台X1Aモータ接続	
	4.2.5.3 モータケーブルの選定	
	4.2.5.4 AC入力でのモータケーブル長に応じた伝導妨害	67
	4.2.5.5 モータ並列運転のモータケーブル長	
	4.2.5.6 モータケーブルのサイズ	68
	4.2.5.7 モータの接続	68
	4.2.5.8 温度監視とブレーキ制御の接続(X1C)	69
	4.2.6 制動抵抗器の接続と使用	71
	4.2.6.1 サイドマウント式制動抵抗器の取付手順	71
	4.2.6.2 端子台X1A制動抵抗器接続	72
	4.2.6.3 温度監視を行わない制動抵抗器の使用	73
	4.2.7 強制冷却ファン用電源接続	74
	4.3 オプション	75
	4.3.1 EMCラインフィルタとACリアクトル	75
	4.3.2 スルーマウントヒートシンクIP54対応用密閉シール	75
	4.3.3 冷却システムへの接続	75
	4.3.4 サイドマウント式制動抵抗器	75
5	認定	76
	5.1 CEマーク	76
	5.2 UL認証	
	5.3 詳細情報とドキュメント	
C	李更履歷	79
n	多牙腔性	/ 9

図目次

図目次

図1:	銘板	25
図2:	設定可能なオプション	26
図3:	OCレベル150%での過負荷特性 (OL過負荷特性)	33
図4:	OCレベル180%での過負荷特性 (OL過負荷特性)	34
図5:	低出力周波数時の過負荷特性(OL2) 例:インバータサイズ29	35
図6:	エネルギーフローのブロック図	44
図7:	ファン	46
図8:	ファンのオン/オフ動作ヒートシンクファンの例	46
図9:	ファンの冷却方向	47
図10:	空冷式標準ヒートシンクの外形寸法	48
図11:	水冷式標準ヒートシンクの外形寸法	49
図12:	空冷式スルーマウントヒートシンク IP20、IP54対応の外形寸法	50
図13:	水冷式スルーマウントヒートシンク IP20、IP54対応の外形寸法	51
図14:	スルーマウントヒートシンクIP54対応の取付	52
図15:	F6ハウジング8にM10アイボルト取付	53
図16:	F6ハウジング7にフットブラケット取付	53
図17:	取り付けスペース	55
図18:	制御盤の換気	55
図19:	F6ハウジング8の正面図	57
図20:	F6ハウジング8の下面図	58
図21:	F6ハウジング8 制御カードAPPLICATIONの上面図	59
図22:	入力回路	60
図23:	400Vユニットの主回路端子台X1A	61
図24:	保護接地の接続	62
図25:	三相主電源の接続	63
図26:	端子台X1A DC電源接続	64
図27:	モータの配線	65
図28:	端子台X1Aモータ接続	66
図29:		
図30:		
図31:		
図32:	ブレーキ制御の接続	70
図33:	KTYセンサの接続	70
図34:	端子台X1A制動抵抗器接続	72
図35:	強制冷却ファン用電源接続	74

表目次

表1:	ネームプレートの説明	23
表2:	周囲環境条件	27
表3:	振動	28
表4:	汚染	28
表5:	ユニット分類	29
表6:	電磁両立性	29
表7:	400Vユニットデータの概要	31
表8:	400Vユニットの入力電圧と周波数	31
表9:	400Vユニットの主回路電圧	31
表10:	400Vユニットの出力電圧と周波数	32
表11:	モータ印加電圧の計算例:	32
表12:	400Vユニットの入力電流	32
表13:	400Vユニットの出力電流	32
表14:	インバータサイズ27 スイッチング周波数毎の最大出力電流	36
表15:	インバータサイズ28 スイッチング周波数毎の最大出力電流	36
表16:	インバータサイズ29 スイッチング周波数毎の最大出力電流	37
表17:	インバータサイズ30 (OCレベル: 150%) スイッチング周波数毎の最大出力電流	37
表18:	インバータサイズ30 (OCレベル: 180%) スイッチング周波数毎の最大出力電流	38
表19:	インバータサイズ27 スイッチング周波数毎の最大出力電流	39
表20:	インバータサイズ28 スイッチング周波数毎の最大出力電流	39
表21:	インバータサイズ29 スイッチング周波数毎の最大出力電流	40
表22:	インバータサイズ30 (OCレベル: 150%) スイッチング周波数毎の最大出力電流	
表23:	インバータサイズ30 (OCレベル: 180%) スイッチング周波数毎の最大出力電流	41
表24:	400Vユニットの電力損失	41
表25:	400V/480Vユニットの保護	
表26:	空冷式標準ヒートシンクのスイッチング周波数と温度	
表27:	水冷式標準ヒートシンクのスイッチング周波数と温度	43
表28:	400Vユニットの主回路/制動トランジスタ機能	
表29:	ヒートシンク取付制動抵抗器	45
表30:	ファンのオン/オフ温度	47
表31:	標準ヒートシンクの設置手順	
表32:	スルーマウントヒートシンクの設置手順	54
表33:	最大モータケーブル長	
表34:	EMCラインフィルタとACリアクトル	
表35:	スルーマウントヒートシンクIP54対応用密閉シール	75
表36:	冷却システムへの接続	75

用語集

コモン Heidenhain社の双方向エンコーダイ 0V Endat ンターフェース 単相電源 1ph Beckhoff社のリアルタイムイーサネッ **EtherCAT** 三相電源 3ph トバスシステム AC AC電流または電圧 Ethernet リアルタイムバスシステム-プロトコ AFE 2019年7月から、AICからAFEへ名称 ル、コネクタ、ケーブルタイプを定義 を変更します FΕ 機能接地 2019年7月から、AICフィルタからAFE AFEフィルタ **FSoE** EtherCATの機能安全プロトコル フィルタへ名称を変更します FU インバータ 能動連系変換器(Active Infeed AIC 基準雷位、グランド Converter) **GND** AICフィルタ 能動連系変換器用フィルタ GTR7 制動トランジスタ Application アプリケーションは、KEB製品の使用 HFフィルタ 主電源への高周波フィルタ 目的です。 (EMCライン フィルタ) **ASCL** アシンクロナスセンサレスクローズド ループ Hiperface Sick-Stegmann社の双方向エンコー ダインターフェース モータオートチューニング。抵抗とイン Auto motor ヒューマンマシンインターフェース ダクタンスを測定する ident. HMI (タッチスクリーン) 米国ワイヤーゲージ規格 **AWG** HSP5 PC接続診断用インターフェース B₂B B2B(企業間取引) 出力電圧(最大30V)のインクリメンタ HTL **BiSS** センサおよびアクチュエータ用のオー ル信号->TTL プンソースのリアルタイムインター フェース (DIN 5008) **IEC** 国際電気標準会議 CAN フィールドバスシステム IP xx IP規格・防水保護構造および保護等級 (xxは等級) CDF デューティサイクルに対する総負荷時 KEB製品はこのマニュアルの対象で KEB製品 間の比率 す。 補助装置(制御盤)を含む完全なドラ CDM イブモジュール **KTY** KTY温度センサ **COMBIVERT** KEBインバータ Manufacturer 製造元は、KEBです。それ以外の場合 は、機械、エンジン、車両、接着剤等の パラメータ設定ソフトウェア **COMBIVIS** メーカー。 Customer お客様はKEBからKEB製品を購入し、 **MCM** ケーブル断面積のアメリカの測定単位 KEB製品を自分の製品(顧客製品) に統合するか、KEB製品を再販します 周波数変調・振幅変調・パルス変調な Modulation ど信号を変化させる方法 (ディーラ)。 平均故障時間 DC DC電流または電圧 **MTTF** DI 脱イオン水 海面0m NN DIN ドイツ工業規格 OC 過電流 DS 402 CiA DS 402-インバータのCANデバイ オーバーヒート OH スプロファイル OL 過負荷 **EMC** 雷磁面立性 OSSD 出力スイッチング素子;電源(出力)オ 緊急時のインバータのシャットダウン フを定期的に確認する信号(安全技 Emergency (非通電) 術)。 stop 緊急時の電圧供給をオフにする **PDS** モータを含むパワードライブシステム Emergency switching off およびセンサ PΕ 保護接地 **EMS Energy Management System** 保護特別低電圧(IEC 60364-4) ΕN EN規格 **PELV** ソフトウェア上のエンコーダ出力信号 PFD 機能失敗平均確率(EN 61508-1~7) Encoder emulation PFH 1時間の間に危険故障平均確率 End customer 最終顧客は、顧客製品のユーザーです。 (EN 61508-1~7)

PLC プログラマブルロジックコントローラ 温度0℃の時の抵抗値が100Ωの温度 PT100 センサ 温度0℃の時の抵抗値が1000Ωの温 PT1000 度センサ PTCサーミスタ PTC **PWM** パルス幅変調 接続数8個の8ピンタイプのコネクタ RJ45 SCL センサレスクローズドループ **SELV** 安全超低電圧回路(<60V) SIL 安全度水準。IEC 61508においてシス テムの安全性能を表す尺度で、SIL1か らSIL4まで4段階定められ、SIL4が最 高の水準です。 IEC 61800-5-2に準拠した安全規格 SS1 「Safe stop 1」 SSI エンコーダ用の同期シリアルインター フェース STO IEC 61800-5-2に準拠した安全規格

Safe Torque Off

ンタル信号

最大5Vの出力電圧を持つインクリメ

ユニバーサル・シリアル・バス

Ethernetベースのバスシステム

TTL

USB VARAN

インバータ/制御盤の規格

インバータ製品規格

Adjustable speed electrical power drive systems - Part 2: General requirements-Rating specifications for low voltage adjustable frequency a.c. power drive systems (VDE 0160-102, IEC 61800-2)

EN 61800-3

Speed-adjustable electrical drives. Part 3: EMC requirements and specific test methods (VDE 0160-103, IEC 61800-3)

EN 61800-5-1

Adjustable speed electrical power drive systems - Part 5-1: Safety requirements - Electrical, thermal and energy (IEC 61800-5-1); German version EN 61800-5-1

EN 61800-5-2

Adjustable speed electrical power drive systems - Part 5-2: Safety Requirements - Functional (IEC 22G/264/CD)

UL 61800-5-1

American version of the EN 61800-5-1 with "National Deviations"

インバータ基本規格

EN 55011	Industrial, scientific and medical equipment - Radio frequency disturbance characteristics - Limits and methods of measurement (CISPR 11); German version EN 55011
EN 55021	Interference to mobile radiocommunications in the presence of impulse noise - Methods of judging degradation and measures to improve performance (IEC/CISPR/D/230/FDIS); German version prEN 55021
EN 60529	Degrees of protection provided by enclosures (IP Code) (IEC 60529)
EN 60664-1	Insulation coordination for equipment within low-voltage systems Part 1: Principles, requirements and tests (IEC 60664-1)
EN 60721-3-1	Classification of environmental conditions - Part 3-1: Classification of groups of environmental parameters and their severities - Section 1: Storage (IEC 60721-3-1); German version EN 60721-3-1
EN 60721-3-2	Classification of environmental conditions - Part 3: Classification of groups of environmental parameters and their severities - Section 2: Transportation and handling (IEC 104/670/CD)
EN 60721-3-3	Classification of environmental conditions - Part 3: Classification of groups of environmental parameters and their severities; section 3: Stationary use at weatherprotected locations; Amendment A2 (IEC 60721-3-3); German version EN 60721-3-3
EN61000-2-1	Electromagnetic compatibility (EMC) - Part 2: Environment - Section 1: Description of the environment - Electromagnetic environment for low-frequency conducted disturbances and signalling in public power supply systems
EN 61000-2-4	Electromagnetic compatibility (EMC) - Part 2-4: Environment; Compatibility levels in industrial plants for low-frequency conducted disturbances (IEC 61000-2-4); German version EN 61000-2-4
EN61000-4-2	Electromagnetic compatibility (EMC) - Part 4-2: Testing and measurement techniques - Electrostatic discharge immunity test (IEC 61000-4-2); German version EN 61000-4-2
EN61000-4-3	Electromagnetic compatibility (EMC) - Part 4-3: Testing and measurement techniques - Radiated, radio-frequency, electromagnetic field immunity test (IEC 61000-4-3); German version EN 61000-4-3
EN 61000-4-4	Electromagnetic compatibility (EMC) - Part 4-4: Testing and measurement techniques - Electrical fast transient/burst immunity test (IEC 61000-4-4); German version EN 61000-4-4

EN 61000-4-5	Electromagnetic compatibility (EMC) - Part 4-5: Testing and measurement techniques - Surge immunity test (IEC 61000-4-5); German version EN 61000-4-5
EN 61000-4-6	Electromagnetic compatibility (EMC) - Part 4-6: Testing and measurement techniques - Immunity to conducted disturbances, induced by radio-frequency fields (IEC 61000-4-6); German version EN 61000-4-6
EN 61000-4-34	Electromagnetic compatibility (EMC) - Part 4-34: Testing and measurement techniques - Voltage dips, short interruptions and voltage variations immunity tests for equipment with mains current more than 16 A per phase (IEC 61000-4-34); German version EN 61000-4-34
EN 61508-17	Functional safety of electrical/electronic/programmable electronic safety-related systems – Part 17 (VDE 0803-17, IEC 61508-17)
EN 62061	Safety of machinery - functional safety of electrical, electronic and programmable electronic safety-related systems (VDE 0113-50, IEC 62061)
EN ISO 13849-1	Safety of machinery - safety-related parts of control systems - Part 1: General principles for design (ISO 13849-1); German version EN ISO 13849-1

インバータ使用環境規格

インハータ使用境	インハータ使用環境規格				
DGUV regulation 3	Electrical installations and equipment				
DIN 46228-1	Wire-end ferrules; Tube without plastic sleeve				
DIN 46228-4	Wire-end ferrules; Tube with plastic sleeve				
DINIEC 60364-5-54	Low-voltage electrical installations - Part 5-54: Selection and erection of electrical equipment - Earthing arrangements, protective conductors and protective bonding conductors (IEC 64/1610/CD)				
DIN VDE 0100-729	Low-voltage electrical installations - Part 7-729: Requirements for special installations or locations - Operating or maintenance gangways (IEC 60364-7-729:2007, modified); German implementation HD 60364-7-729:2009				
DNVGL-CG-0339	Environmental test specification for electrical, electronic and programmable equipment and systems				
EN 1037	Safety of machinery - Prevention of unexpected start-up; German version EN 1037				
EN 12502-15	Protection of metallic materials against corrosion - Part 15				
EN 60204-1	Safety of machinery - electrical equipment of machines Part 1: General requirements (VDE 0113-1, IEC 44/709/CDV)				
EN 60439-1	Low-voltage switchgear and controlgear assemblies - Part 1: Type-tested and partially type-tested assemblies (IEC 60439-1); German version EN 60439-1				
EN 60947-7-1	Low-voltage switchgear and controlgear - Part 7-1: Ancillary equipment - Terminal blocks for copper conductors (IEC 60947-7-1:2009); German version EN 60947-7-1:2009				
EN 60947-8	Low-voltage switchgear and controlgear - Part 8: Control units for built-in thermal protection (PTC) for rotating electrical machines (IEC 60947-8:2003 + A1:2006 + A2:2011)				
EN 61373	Railway applications - Rolling stock equipment - Shock and vibration tests (IEC 61373); German version EN 61373				
EN 61439-1	Low-voltage switchgear and controlgear assemblies - Part 1: General rules (IEC 121B/40/CDV); German version FprEN 61439-1				
VGB R 455 P	Water treatment and use of materials in cooling systems				
DIN EN 60939-1	Passive filter units for electromagnetic interference suppression - Part 1: Generic specification (IEC 60939-1:2010); German version EN 60939-1:2010				

1 安全上の注意事項

本製品は、最新の安全規則に従って設計、製造されていますが、状況によっては、使用者または第三者の生命、身体の危害を及ぼしたり、機械・装置またはその他の機器を損傷させる可能性があります。

以下の安全に関する注意事項は、電気駆動技術の分野向けに製造業者によって作成されたものです。これらは、地域、国、またはアプリケーション固有の安全規制によって補足することができます。顧客、ユーザー、またはその他の第三者による安全指示を守らないと、これによって引き起こされた製造業者に対するすべての請求が失われます。

NOTICE

安全上および使用上の危険とリスク

- ▶ 取扱説明書を読む!
- ▶ 安全上の注意事項および警告指示を遵守する!
- ▶ 何か不明な点があれば、KEB Automation KGに連絡してください!

1.1 対象読者

本書は、担当される技術者向けです。全ての取り扱い、設置、操作は、熟練された技術者が行ってください。

- 安全上の注意事項の知識と理解。
- 設置および組立のスキル。
- 装置の起動と操作。
- 使用する装置の機能に関する理解。
- 電気駆動技術の危険とリスクの検出。
- DIN IEC 60364-5-54に関する知識。
- 国の安全規則に関する知識。

1.2 輸送、保管、適切な取り扱い

輸送は、本書で指定された環境条件を考慮して、適切に訓練された人が行う必要があります。インバータは、許容できない負荷から保護する必要があります。

全長が75cmを超えるインバータの輸送

適切な補助具なしでフォークリフトで輸送すると、ヒートシンクが曲がる可能性があります。これは、内部コンポーネントの早期劣化または故障につながります。

- ▶ インバータを適切なパレットに載せて輸送します。
- ▶ インバータを積み重ねたり、他の重い物を載せたりしないでください。

NOTICE

冷却水接続部の損傷

冷却水継手の変形!

▶ フットブラケットを外した状態でインバータを置いたり、輸送しないでください!

インバータには、静電気の影響を受けやすいコンポーネントが含まれています。

- ▶ 接触を避けてください。
- ▶ ESD保護衣を着用してください。

下記の場所ではインバータを保管しないでください

- 腐食性または導電性の液体または気体の近く。
- 直射日光の当たる場所。
- 指定された環境条件外。

1.3 設置

A DANGER

爆発の可能性のある環境で操作しないでください!

▶ インバータは爆発の可能性のある環境での使用を目的としていません。

A CAUTION

高重量!

けがをする恐れがあります!

- ▶ 吊り荷の下には絶対に立たないでください。
- ▶ 安全靴を着用してください。
- ▶ チェーンブロックを使用する場合は、それに応じてインバータを固定してください。

装置の損傷を防ぐには:

- インバータが変形したり、絶縁距離が変化していないことを確認してください。
- 機械的な欠陥が発生した場合は、装置を稼働させないでください。
- 湿気やミストがインバータに侵入しないようにしてください。
- ほこりがインバータに侵入しないようにしてください。防塵の制御盤に取り付ける場合は、十分な放熱を確保してください。
- 周囲の安全環境と設置スペースの最小間隔を守ってください。換気口を塞さがないでください。
- 指定された保護等級に従ってインバータを取り付けてください。
- 設置や配線の際にインバータに小さな部品が落ちないようにしてください (切粉、ねじなど)。これは、動作中に小さな部品を失う可能性のある機械部品にも当てはまります。
- 接触によるスパークを避けるために、インバータの設置、配線がしっかりと固定されていることを確認してください。
- インバータの上を歩かないでください。
- すべての安全上の注意事項を守ってください!

1.4 配線

A DANGER

端子およびインバータの電圧!

感電による生命の危険!

- 電源がオンになっているインバータを作業したり、露出部分に触れたりしないでください。
- ► インバータを作業する場合は常に、電源をオフにし、再びオンにならないように確保し、入力端子を測定してインバータの電源が切れていることを確認してください。
- ▶ 回生エネルギーがある可能性があるため、すべてのインバータが停止するまで待ちます。
- ▶ コンデンサの放電時間(5分)を待ちます。DC電源接続(主回路端子)で 測定して電圧がないことを確認してください。
- ▶ 個別保護が必要な場合は、インバータに適切な保護装置を取り付けて ください。
- ▶ テスト目的であっても、上流の保護装置を絶対にブリッジしないでください。
- ▶ 保護接地導体を常にインバータとモータに接続してください。
- ▶ 操作に必要なすべてのカバーと保護装置を取り付けます。
- ▶ 運転中は制御盤を閉じたままにしてください。
- ▶ 漏れ電流:この製品は、保護接地導体に直流を引き起こす可能性があります。漏れ電流保護装置(RCD)または漏れ電流監視装置(RCM)が直接または間接接触の保護に使用される場合、RCDまたはRCMタイプBのみがこの製品の電源側で許可されます。
- ► インバータの漏れ電流 > 3.5mA交流(10mA直流)のインバータは、固定接続用です。保護アース導体は、EN 61800-5-1、EN 60204-1、またはDIN IEC 60364-5-54に準拠した高リーク電流の機器の現地の規制に従って設計する必要があります。

システムの設置時に個別保護が必要な場合は、インバータに適切な保護装置を使用する必要があります。

 $www.keb.de/fileadmin/media/Manuals/knowledge/04_techinfo/00_general/ti_rcd_0400_0002_gbr.pdf$

インバータが設置されているシステムには、該当する安全規制に従って、追加の監視および保護装置を設置する必要がある場合があります。技術機器に関する法律、事故防止規制等の指示は、CEマークの付いたインバータでも常に遵守する必要があります。

トラブルのない安全な操作のために、次の指示に従ってください。

- 電気設備は、関連する要件に従って実施するものとする。
- ケーブルサイズとヒューズ容量の最小値/最大値は、使用するアプリケーションに応じてお客様側にて選定する必要があります。
- ・ 配線は75℃以上の高温環境下では、フレキシブル銅ケーブルを使用してください。
- インバータは、最大300Vの中性点/アース(N / PE)ありの相電圧の供給電源にのみ接続できます。より高い電圧の供給電源の場合、対応する絶縁トランスを電源とインバータの間に設置する必要があります。これが遵守されない場合、制御はPELV回路とみなされなくなります。
- 装置または機械の設置者は、既存または新規の配線にて回路がPELVの要件を満たしているか確認する必要があります。
- 電源回路から絶縁されていないインバータ(EN 60721-3-2に準拠)の場合、すべての 制御ラインに追加の保護対策(二重絶縁またはシールド、接地、絶縁など)を実施する 必要があります。
- 電気的に絶縁された入力/出力を使用しないコンポーネントを使用する場合、接続するコンポーネント間を同電位化である必要があります(同電位ボンディング)。これを遵守しないと、異常な電流が流れた場合コンポーネントが破損する可能性があります。

1.4.1 EMC準拠の設置

EMC規格で要求されている制限値を守ることはお客様の責任となります。

EMC準拠の設置に関する情報は、下記を参照してください。 www.keb.de/fileadmin/media/Manuals/dr/emv/0000neb0000.pdf

1.4.2 電圧テスト

AC電圧を使用したテスト (EN 60204-1の18.4章に準拠) は、インバータ内のパワー半導体 にリスクがあるため、実行しないでください。

無線干渉抑制コンデンサにより、テストジェネレータは電流エラーで即座にオフになります。

EN 60204-1によれば、すでにテスト済みのコンポーネントを切断することが許可されています。KEB Automation KGのインバータは、製品規格に従って工場から100%電圧テスト済みで出荷されます。

1.4.3 絶縁測定

DC 500Vの絶縁測定 (EN 60204-1の18.3章に準拠) は、すべての電源ユニット接続 (グリッド接続電位) およびすべての制御接続がPEでブリッジされている場合に許可されます。各デバイスの絶縁抵抗は、技術データに記載されています。

1.5 起動と操作

設置が機械指令の規定に準拠していると判断されるまで、インバータを起動しないでください。EN 60204-1を遵守する必要があります。

WARNING

ソフトウェア保護とプログラミング!

インバータの意図しない動作による危険!

- ▶ 特に初めての起動時またはインバータの交換時には、パラメータ設定 がアプリケーションに適しているかどうかを確認してください。
- ► インバータのソフトウェア機能の保護だけでは不十分です。インバータ ソフトウェア保護機能以外での対策(リミットスイッチ等)を必ず設置し てください。
- ▶ モータ運転スイッチがOFFになっていることを確認してください。

A CAUTION

ヒートシンクと冷却水が高温になっています!

やけどに注意してください!

- ▶ ヒートシンクの表面を覆い、触れても安全なようにします。
- ▶ 必要に応じて、高温注意などの警告を表示してください。
- ▶ ヒートシンクと冷却回路に触れる前に確認してください。
- ▶ 作業を開始する前に、インバータを冷却してください。
- 運転中は、すべてのカバーとドアを閉めてください。
- インバータで承認されているアクセサリのみ使用してください。
- 端子、ブスバー、ケーブルの端には絶対に触れないでください。

インバータの主回路には、電解コンデンサが使用されています。インバータに1年以上電源を投入していない場合は、下記の指示に従ってください。

NOTICE

定格55kW以上のモータを60%以上の負荷で連続運転(S1)した場合、電解コンデンサの劣化が早まります。

► Uk = 4%のACリアクトルを使用します。

出力側でのオン/オフ

個々のドライブの場合、保護装置が作動する原因となるため運転中は、インバータとモータの切り替えは行わないようにします。停止での切り替えができない場合は、「スピードサーチ」機能を有効にする必要があります。これはモータが切り替わった後に開始されます(例えば制御リリース切り替え)。

マルチモータドライブでは、切り替えプロセス中に1つのモータが運転している場合、オン/オフの切り替えが許可されます。インバータは、発生する起動電流に対応できるよう選定します。

モータがフリーラン中にインバータの主電源をオンにする場合は、「スピードサーチ」機能を有効にする必要があります。

入力側でのオン/オフ

入力側でインバータを周期的にオン/オフにする必要があるアプリケーションの場合、オン/オフの間隔は最低5分以上空ける必要があります。より短いサイクルタイムでのオン/オフが必要な場合は、KEB Automation KGにお問い合わせください。

短絡抵抗

インバータは、条件付きの短絡保護機能を備えています。内部保護装置をリセットした後、指示どおりの機能が保証されます。

例外:

- 出力に漏電故障や短絡が多発する場合は、ユニットの故障の原因となります。
- 発電機の動作中に短絡が発生した場合(第2象限または第4象限、主回路のフィードバック)、これはユニットの故障の原因となります。

1.6 保守

以下の保守作業は、電気の専門家あるいは指定された作業員が、少なくとも年に1回実行する必要があります。

- ▶ ねじやプラグに緩みがないか確認し、必要な場合増し締めします。
- ▶ ヒートシンクや冷却ファンにごみやほこりが堆積していないか確認します。
- ▶ 制御盤の吸気、排気口のフィルタの確認と清掃をします。
- ▶ 冷却ファンに異常音、異常振動がないか確認します。異常がある場合は、新品交換の必要があります。
- ▶ 水冷インバータの接続コネクタに腐食がないことを確認します。必要な場合新品に交換してください。水冷インバータを長期間使用しない場合は、冷却回路は完全に水抜きする必要があります。0℃未満の温度では、エアーで冷却回路の水抜きをする必要があります。

1.7 修理

故障、異音、異臭が発生した場合は、責任者に連絡してください!

A DANGER

不正な交換、修理、改造!

予期せぬ誤動作!

- ► インバータの機能は、パラメータの設定によって異なります。アプリケーションの知識なしにパラメータの設定変更をしないでください。
- ▶ 変更または修理は、必ず弊社の担当者にご依頼ください。
- ▶ メーカー純正部品のみを使用してください。
- ▶ これに違反した場合、もたらされる結果の信頼性が損なわれます。

故障の場合は機械・装置メーカーにお問い合わせください。使用されているインバータの パラメータ設定を知っているのは機械・装置メーカーになります。適切な交換または、メン テナンスを行うことができます。

1.8 廃棄

KEB Automation KGの電子デバイスは、産業処理の専門的な機器になります(B2Bデバイス)。B2Bデバイスのメーカーは、2018年8月14日以降に製造されたデバイスを回収してリサイクルする義務があります。原則として、これらのデバイスは地方自治体の収集場所に引き渡すことはできません。

お客様とKEB Automation KG間で特別な契約または強制的な法規制がない場合は、図のようなマークが付いた製品はKEB Automation KGへ返却できます。製品の返却先については下記のリストで確認できます。送料はお客様負担となります。返却後に、適切にリサイクルおよび廃棄されます。

下記の表は、各国毎の注文番号を示しています。対応するKEB Automation KGの返却先住所は、弊社のWebサイトに記載されています。

Withdrawal by	WEEE-RegNo.		Keyword
Austria			
KEB Automation GmbH	ERA:	51976	Stichwort "Rücknahme WEEE"
France			
RÉCYLUM - Recycle point	ADEME:	FR021806	Mots clés "KEB DEEE"
Germany			
KEB Automation KG	EAR:	DE12653519	Stichwort "Rücknahme WEEE"
Italy			
COBAT	AEE: (IT)	19030000011216	Parola chiave "Ritiro RAEE"
Spain			
KEB Automation KG	RII-AEE	7427	Palabra clave "Retirada RAEE"
Česko			
KEB Automation KG	RETELA	09281/20 ECZ	Klíčové slovo: Zpětný odběr OEEZ

梱包材は、紙および段ボールの梱包材にリサイクルされます。

2 製品の特徴

COMBIVERT F6シリーズは、同期モータおよび誘導モータの動作用に最適化されたインバータです。コンビバートは、安全機能モジュールを追加することで、機能安全規格の安全機能(STO,SS1,SBC等)に対応することができます。また、さまざまなフィールドバスシステムに対応しています。制御方式(APPLICATION,COMPACT,PRO)で、パラメータの基本構成は同じになります。

コンビバートは低電圧指令の要件を満たしています。EN 61800-5-1安全規格に適用されます。

コンビバートは、EN 61800-3に準拠した製品です。この製品は、住宅地で無線干渉を引き起こす可能性があります。この場合、利用者は適切な対策を講じる必要があります。カテゴリに応じて、機械指令、EMC指令、低電圧指令、およびその他のガイドラインと規制を遵守する必要があります。

2.1 用途

三相モータの速度制御とトルク制御のために設計されています。本製品は制御盤または機械に取り付けて使用する設計となっています。

接続に関する条件および技術情報は、取扱説明書ならび銘板に記載されていますので、必ず守ってください。

KEB Automation KGが使用する半導体とコンポーネントは、産業用製品専用として選定・設計されています。

制限

KEBコンビバートが例外的な状況で動作する機械に使用されたり、生命維持装置や特殊な安全性が求められる場合は、必要な信頼性や安全性はその機械・装置の設計者によって確実なものとしていただく必要があります。

2.1.1 残存リスク

インバータは、目的の用途で使用しても、故障、誤ったパラメータ設定、接続の場合に予期しない動作状況になる可能性があります。その場合、下記のような状況が起こりうる可能性があります。

- 逆回転
- モータ速度の超過
- モータの仕様を超えての運転
- モータが停止状態でも電圧の印加
- 自動スタート

2.2 目的外の使用

本製品に他の電気的負荷の接続や操作は行わないでください。故障および不具合をきたす恐れがあります。また、仕様・条件の範囲を超えて運転されないようご注意願います。

2.3 製品概要

本取扱説明書では、下記の製品の主回路について説明します。

製品の種類: インバータ

シリーズ: COMBIVERT F6 出力範囲: 160~315kW / 400V

ハウジング: 8

COMBIVERT F6の特徴は下記になります。

- 速度フィードバック(エンコーダ)あり/なしのオープンループまたはクローズドループ 制御での、三相モータ(誘導伝導機、同期モータ)の運転
- フィールドバスシステムEtherCAT、VARAN、PROFINET、POWERLINKまたはCAN に対応しています。
- 制御方式(APPLICATION, COMPACT, PRO)で同じパラメータの構成
- 広い動作温度範囲
- IGBTパワーユニット採用により、スイッチングロスが極めて小さい
- 高スイッチング周波数でも低ノイズ
- ・ ヒートシンクの冷却方式が選択可能
- 温度制御による冷却ファン運転ON/OFF、簡単に交換可能
- モータ起動時の電流を抑えるためにトルク制限とSカーブを設定可能
- COMBIVERTシリーズの過電流、過電圧、地絡、過熱に対する一般的な保護機能
- アナログ入出力、ディジタル入出力、リレー出力(ポテンシャルフリー)、ブレーキ制御と供給、ヒューズ、KTYまたはPTC接続によるモータ保護、2つのエンコーダインターフェース、診断インターフェース、フィールドバスインターフェース(制御カードのタイプによる)
- EN 61800-5-2に準拠した安全機能搭載

2.4 ネームプレートの説明

xxF6xxx-xxx

			1: 空冷式標準ヒートシンク
			2: 水冷式標準ヒートシンク
			3: 空冷式スルーマウントヒートシンク (盤外のヒートシンク部分 IP54)
			4: 水冷式スルーマウントヒートシンク (盤外のヒートシンク部分 IP54)
			5: 空冷式スルーマウントヒートシンクIP20
		冷却方式	6: 水冷式スルーマウントヒートシンク 制動抵抗器付 (盤外のヒートシンク部分 IP54)
			7: 油冷式スルーマウントヒートシンク (盤外のヒートシンク部分 IP54)
			9: 水冷式標準ヒートシンク 制動抵抗器付
			A: 水冷式スルーマウントヒートシンク 制動抵抗器付 バージョン2 (盤外のヒートシンク部分 IP54)
			B: 水冷式標準ヒートシンク 制動抵抗器付 バージョン2
			APPLICATION
			1: ∇ ルチエンコーダインターフェース、 CAN° 2)、リアルタイム・ イーサネット・バスモジュール 3)
			COMPACT
			1: マルチエンコーダインターフェース、CAN® 2)、STO、EtherCAT® 1)
		インターフェースのタイプ	
			PRO
			3: イーサネット・インターフェース、CAN® 2)、リアルタイム・
			4: エンコーダなし、 $CAN^{(8)}$ (リアルタイム・イーサネット・インターフェース $^{(3)}$ 、安全リレー
			5: マルチエンコーダインターフェース、CAN ^{® 2)} 、リアルタイム・ イーサネット・インターフェース ³ 、安全リレー
			0: 2kHz/125%/150% 6: 8kHz/150%/180%
			1: 4kHz/125%/150% 7: 16kHz/150%/180%
		スイッチング周波数、 ピーク出力電流率、	2: 8kHz/125%/150% 8: 2kHz/180%/216%
		過電流トリップ率	3: 16 kHz/125%/150% 9: 4 kHz/180%/216%
			4: 2kHz/150%/180% A: 8kHz/180%/216%
			5: 4 kHz/150%/180% B: 16 kHz/180%/216%
			1: 三相 230V AC/DC (制動トランジスタ搭載)
		再准3 七十十	2: 三相 230V AC/DC (制動トランジスタなし)
		電源入力方式	3: 三相 400V AC/DC (制動トランジスタ搭載)
			4: 三相 400V AC/DC (制動トランジスタなし)
		ハウジングタイプ	2~9
			1: 安全機能モジュールタイプ1/制御方式Kの場合は、安全機能 STOのみ対応。
		中心 燃料	3: 安全機能モジュールタイプ3
		安全機能	4: 安全機能モジュールタイプ4
			5: 安全機能モジュールタイプ5
			A: APPLICATION
		制御方式	K: COMPACT
			P: PRO
		シリーズ	COMBIVERT F6
		インバータサイズ	10~33
表1: ネーム	プL I	<u>ーー・インハーダッイス</u> トの説明	10 -00
$X \cap Y = X$	ノレー	「マノロルザゴ	

EtherCAT®は、ドイツのBeckhoff Automation GmbHからライセンス供与された登録商標および特許技術です

CANOpen

CANopen®は、AUTOMATION-International Users and Manufacturers Group e.V.におけるCANの登録商標です。

³⁾ リアルタイム・イーサネットバスモジュール/リアルタイム・イーサネット・インターフェースには、 ソフトウェア(パラメータfb68)を使用して設定できる各種フィールドバスコントロールが含ま れています。

ネームプレートは注文コードとしては使用されず、識別のためにのみ使用されます。

2.5 銘板

製品の特徴

2.5.1 設定可能なオプション

機能	特性値	説明		
ソフトウェア	SWxxx	インバータのソフトウェアバージョン		
オプション	Axxx	選択されたオプション		
カノノヨノ	NAK	オプションなし		
出力周波数リミット	LIM	出力周波数599Hzリミットあり		
四月间収録リニケー	ULO	出力周波数599Hzリミットなし		
保証	WSTD	保証 - 標準		
	Wxxx	保証 - 延長保証		
パラメータ	PSTD	パラメータ - 標準		
	Pxxx	パラメータ - 顧客専用		
銘板口ゴ	LSTD	ロゴ - 標準		
	Lxxx	ロゴ - 顧客専用		
図2: 設定可能なオプション				

「X」は変数値を表します

3 技術データ

特に明記されていない限り、次の章のすべての電気的データは、三相AC電圧供給に関するものです。

3.1 運転条件

3.1.1 周囲環境条件

保存時		標準	クラス	説明
温度		EN 60721-3-1	1K4	-25~55℃
湿度		EN 60721-3-1	1K3	5~95% (結露なきこと)
保管場所の標高		_	_	最大標高は、3,000mです。
輸送中		標準	クラス	説明
温度		EN 60721-3-2	2K3	-25~70℃
湿度		EN 60721-3-2	2K3	40°Cで95% (結露なきこと)
運転中		標準	クラス	説明
温度		EN 60721-3-3	3K3	5~40°C (-10~45°Cに拡張)
流入する冷却水の	空冷	_	_	5~40 °C (-10~45 °C)
温度	水冷	_	_	5~40°C
湿度		EN 60721-3-3	3K3	5~85% (結露なきこと)
		EN 60529	IP20	異物からの保護 > ø12.5mm
				水に対する保護なし
 保護構造と保護クラ <i> </i> 	ス			非導電性汚染、PDSが使用されていないときに 時々発生する結露
				電源接続とファンユニット(IPxxA)を除く、イン バータ全般
				最大標高は、2,000mです。
設置場所の標高			_	・ 標高が1,000mを超えると、100m毎に出力 が1%低下することを考慮してください。
		_		・ 標高が2,000mを超える場合、制御回路の絶縁は安全ではなくなります。制御回路では、 追加で対策をする必要があります。
表2: 周囲環境条件				

技術データ

3.1.2 振動

保存時	標準	クラス	説明
振動	EN 60721-3-1	1M2	振幅振動 1.5mm (2~9Hz)
	LIN 00721-3-1	TIVIZ	加速度振幅 5m/s² (9~200Hz)
衝撃	EN 60721-3-1	1M2	40 m/s²; 22 ms
輸送中	標準	クラス	説明
			振幅振動 3.5mm (2~9Hz)
振動	EN 60721-3-2	2M1	加速度振幅 10m/s² (9~200Hz)
			(加速度振幅 15m/s² (200~500Hz))*
衝撃	EN 60721-3-2	2M1	100 m/s²; 11 ms
運転中	標準	クラス	説明
	EN 60701 2 2	2114	振幅振動 3.0mm (2~9Hz)
に に に に に に に に に に に に に に に に に に に	EN 60721-3-3	3M4	振幅振動 3.0mm (2~9Hz) 加速度振幅 10m/s² (9~200Hz)
振動		3M4	, ,
振動	EN 60721-3-3 EN 61800-5-1	3M4 _	加速度振幅 10m/s² (9~200Hz)
振動		3M4 - 3M4	加速度振幅 10m/s² (9~200Hz) 振幅振動 0.075mm (10~57Hz)
衝撃	EN 61800-5-1	_	加速度振幅 10m/s² (9~200Hz) 振幅振動 0.075mm (10~57Hz) 加速度振幅 10m/s² (57~150Hz)
	EN 61800-5-1	_	加速度振幅 10m/s² (9~200Hz) 振幅振動 0.075mm (10~57Hz) 加速度振幅 10m/s² (57~150Hz) 100 m/s²; 11 ms

^{*} 未検証

3.1.3 汚染

保存時		標準	クラス	説明
汚染	ガス	EN 60721-3-1	1C2	_
/J .K.	塵埃	LIV 00721-3-1	1S2	-
輸送中		標準	クラス	説明
汚染	ガス	EN 60721-3-2	2C2	-
/J .K.	塵埃	EN 00721-3-2	2S2	_
運転中		標準	クラス	説明
汚染	ガス	EN 60721-3-3	3C2	-
/7 本 	塵埃	EN 00121-3-3	3S2	-
表4: 汚染				

3.1.4 電気的動作条件

3.1.4.1 ユニット分類

必要条件	標準	クラス	説明
過電圧カテゴリ	EN 61800-5-1	III	_
心电圧ガナコツ	EN 60664-1	111	_
汚染度レベル	EN 60664-1	2	非導電性汚染、PDSが使用されていないときに 時々発生する結露
表5: ユニット分類			

3.1.4.2 電磁両立性

示された値は、EMCラインフィルタ有の場合に有効となります。

EMCエミッション (電磁妨害波放出)	標準	クラス	説明
伝導ノイズ	EN 61800-3	C2	-
放射ノイズ	EN 61800-3	C2	_
EMCイミュニティ (電磁妨害波耐性)	標準	レベル	説明
静電気放電 (ESD)	EN 61000-4-2	8kV 4kV	AD (空中放電) CD (接触放電)
電気的ファーストトランジェント - 信号・通信	EN 61000-4-4	2kV	_
電気的ファーストトランジェント-主電源	EN 61000-4-4	4 kV	-
サージ -主電源	EN 61000-4-5	1kV 2kV	相 - 相 相 - アース
ケーブルからの伝搬による高 周波妨害波	EN 61000-4-6	10 V	0.15~80MHz
EMF	EN 61000-4-2	10 V/m 3 V/m 1 V/m	80MHz~1GHz 1.4~2GHz 2~2.7GHz
電圧変動/電圧降下	EN 61000-2-1		-15 %~+10 %
电压叉到电压性工	EN 61000-4-34	_	90%
周波数変更	EN 61000-2-4	ı	≤ 2 %
電圧偏差	EN 61000-2-4	_	±10%
電圧アンバランス	EN 61000-2-4	-	≤ 3 %
表6: 電磁両立性			

3.2 400Vクラスのユニットデータ

3.2.1 400Vユニットの概要

この技術データは、2または4極の標準モータを対象にしています。その他の極数のモータに関しては、そのモータデータの定格電流よりサイズを選定してください。また、特殊モータ、高周波モータに関してはお問い合わせください。

インバータサイズ			27	28	29	3	0
ハウジングタイプ				'	8		
定格出力容量		S _{out} / kVA	208	256	319	39	95
最大適用モータ容量	1)	P _{mot} / kW	160	200	250	3.	15
定格入力電圧		U _N / V		4	00 (UL: 48	0)	
入力電圧範囲		U _{in} / V			280~550		
電源相数					3		
電源周波数		f _N / Hz			50 / 60 ±2		
定格入力電流(U _N = 400V時)		I _{in} / A	315	390	485	60	00
定格入力電流(U _N = 480V時)		I _{in_UL} / A	269	337	414	49	94
絶縁抵抗(<i>U_dc</i> = 500V時)		R_{iso} / $M\Omega$	> 15				
出力電圧		U _{out} / V	0~入力電圧				
出力周波数	2)	f _{out} / Hz			0~599		
出力相数					3		
定格出力電流(U _N = 400V時)		I _N / A	300	370	460	5	70
定格出力電流(U _N = 480V時)		I _{N_UL} / A	260	325	400	47	77
最大出力電流 (60秒)	3) 4)	I _{60s} / %		12	25		150
ソフトウェア電流制限	3)	I _{lim} / %		12	25		150
過電流トリップ電流	3)	I _{OC} / %		15	50		180
定格スイッチング周波数		f _{SN} / kHz	4	4	2	2	2
最大スイッチング周波数	5)	f _{S_max} / kHz	8	8	8	3	3
定格運転中の電力損失	1)	P_D / kW	3	3.8	3.88	tbd	5.27
過負荷特性	3)	I _{OL} / %	Г3.2.3.	1 過負荷特	性 (OL)」を	参照してくる	どさい。
最大出力電流 0Hz/50Hz (f _S = 2kHz時)		I _{out_max} / %	150/150	122/150	98/150	tbd	72/172
最大出力電流 0Hz/50Hz (f _S = 4kHz時)		I _{out_max} / %	91/150	74/150	59/122	tbd	40/110
最大出力電流 0Hz/50Hz (f _S = 8kHz時)		I _{out_max} / %	36/87	29/71	24/57	tbd	17/54
						次ペ	ージへ続く

インバータサイズ		27	28	29	30
ハウジングタイプ				8	
最大制動電流	I _{B_max} / A			380	
最小制動抵抗値	R_{B_min}/Ω			2.2	
制動トランジスタ (GTR7)	6)	馬	大サイクル	タイム:12	0秒、ED:50%
制動トランジスタの保護機能 (GTR7)				短絡監視	
制動トランジスタの保護機能 (エラー GTR7 常時 ON)	7)	-	フィードバッ	ク信号の監視	
表7: 400Vユニットデータの概要					

- $\overline{}^{1)}$ 定格動作は、 U_N = 400V、定格スイッチング周波数、出力周波数 =50Hz (4極標準誘導モータ)に対応します。
- ²⁾ スイッチング周波数の1/10を超えないように出力周波数が限定されます。また600Hz以上の出力周波数は、輸出貿易管理令の該当品となるため、別途お問い合わせください。
- 3) 値は、%で定格出力電流/Nを参照しています。
- 4) 「3.2.3.1 過負荷特性 (OL)」の制限を守ってください。
- 5) ディレーティングの詳細については、「3.3.1 スイッチング周波数と温度」を参照してください。
- 6) 使用する制動抵抗器により、サイクルタイムはさらに制限されます。
- 7) フィードバック信号の監視は、制動トランジスタの機能を監視します。電源はAC電源の内部主電源入力ブリッジを介してオフになります。

3.2.2 400Vユニットの電圧と周波数

入力電圧と周波数		
定格入力電圧	U _N / V	400
定格電源電圧 (USA)	U _{N_UL} / V	480
入力電圧範囲	U _{IN} / V	280~550
電源相数		3
電源周波数	f _N / Hz	50/60
電源周波数許容差	±f _N / Hz	2
表8: 400Vユニットの入力電圧と周波数		

主回路の電圧		
主回路の定格電圧(U _N = 400V時)	U _{N_dc} / V	565
主回路の定格電圧(U _{N_UL} = 480V時)	U _{N_UL_dc} / V	680
主回路の動作電圧範囲	U _{IN_dc} / V	390~780
表9: 400Vユニットの主回路電圧		

技術データ

出力電圧と周波数		
出力電圧(AC電源時)	1) U _{out} / V	0~入力電圧
出力周波数	2) f _{out} / Hz	0~599
出力相数		3
表10: 400Vユニットの出力電圧と周波数		

¹⁾ モータへの印加電圧は、設置している機器と制御方式に依存します (「3.2.2.1 モータ印加電圧の計算例:」を参照してください)。

3.2.2.1 モータ印加電圧の計算例:

インバータ駆動時のモータへの印加電圧は、設置されている機器により異なります。電源電圧は、条件によりますが、およそ以下のように減少することを考慮してください。

コンポーネント	削減(%)	例
ACリアクトル(一次側)	4	
インバータオープンループ制御	4	インバータオープンループ制御でACリアクトルおよび モータリアクトルを設置し、負荷電流に対し十分でない電
インバータクローズドループ制御	8	源に使用する場合:
モータリアクトル(二次側)	1	電源電圧400V - 削減電圧36V(11%)= モータ印加電圧
負荷電流に対して十分でない電源	2	356V
表11: モータ印加電圧の計算例:		

3.2.3 入出力電流/過負荷

インバータサイズ			27	28	29	30
定格入力電流(U _N = 400V時)	1)	I _{in} / A	315	390	485	600
定格入力電流(U _{N_UL} = 480V時)	1)	I _{in_UL} / A	269	337	414	494
表12: 400Vユニットの入力電流						

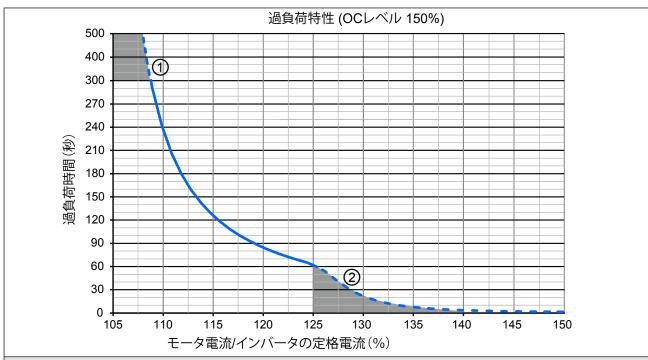
¹⁾ 値は、ACリアクトル4% (一次側)を使用したB6整流回路後の定格運転から得られます。

インバータサイズ			27	28	29		30
定格出力電流(U _N = 400V時)		I _N / A	300	370	460		570
定格出力電流(U _{N_UL} = 480V時)		I _{N_UL} / A	260	325	400		477
最大出力電流 (60秒)	1)	I _{60s} / %		12	25		150
過負荷電流	1)	IOL / %	「3.2.3.1 過負荷特性 (OL)」を参照してくだる				てください。
ソフトウェア電流制限	1) 2)	I _{lim} / %		12	25		150
過電流トリップ電流	1)	loc/%		15	50		180
表13: 400Vユニットの出力電流							

¹⁾ 値は、%で定格出力電流INを参照しています。

²⁾ スイッチング周波数の1/10を超えないように出力周波数が限定されます。また600Hz以上の出力周波数は、輸出貿易管理令の該当品となるため、別途お問い合わせください。

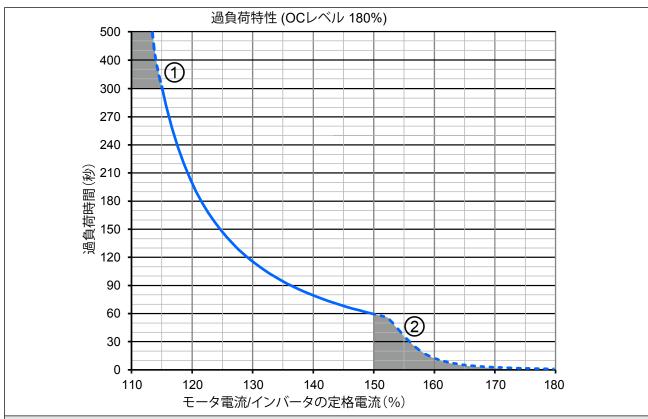
²⁾ クローズドループ制御での電流制限値になります。この制限値は、オープンループ制御では有効ではありません。



3.2.3.1 過負荷特性 (OL)

すべてのインバータは、定格スイッチング周波数で最大出力電流125%、60秒間の運転ができます。

制約条件:


- ヒートシンクの熱設計は、インバータ定格運転時の条件で設計されています。次の値 が考慮されます。定格出力電流、周囲温度、定格スイッチング周波数、定格電圧。
- 周囲温度が高い場合やヒートシンク温度が高い場合、保護機能OLが発生する前に、 ヒートシンク過熱異常が発生する可能性があります。
- 出力周波数が低い場合、または設定スイッチング周波数が定格スイッチング周波数より高い場合は、最大出力電流を超えて、一定時間運転すると過負荷異常(OL2)になります(「3.2.3.2 スイッチング周波数毎の最大出力電流 (OL2)」を参照ください)。

対応番号の説明

- ① 過負荷制限
- ② ソフトウェア電流コントローラによる制限 (制限はパラメータ is35で設定できます)

図3: OCレベル150%での過負荷特性 (OL過負荷特性)

対応番号の説明

- ① 過負荷制限
- ② |ソフトウェア電流コントローラによる制限 (制限はパラメータ is35で設定できます)

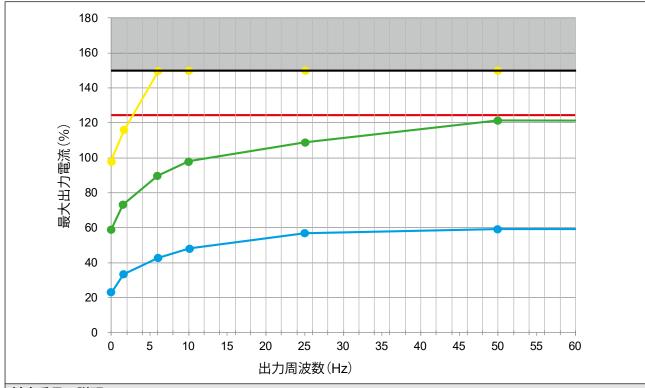
図4: OCレベル180%での過負荷特性 (OL過負荷特性)

- 負荷が105%を超えると、過負荷時間のカウントが開始されます。
- 負荷がこのレベルを下回ると、マイナスにカウントされます。
- カウント値が過負荷特性に応じた時間に達すると、インバータは「Error! Overload (OL)」 になります。

過負荷時間のカウント値が105%以下になると、エラーをリセットすることができます。過負荷時間のカウントが下がるまでインバータの電源は入れたままにする必要があります。

過負荷制限の範囲での操作

過負荷特性の傾きが大きいため、この範囲①での許容過負荷の持続時間を正確に決定することはできません。したがって、インバータを設計する場合は、最大300秒の過負荷時間を想定する必要があります。


3.2.3.2 スイッチング周波数毎の最大出力電流 (OL2)

スイッチング周波数毎に対する出力周波数の最大出力電流の特性は、インバータ毎に異なりますが、ハウジングタイプ8には一般的に次の規則が適用されます。

- 以下は、定格スイッチング周波数に適用されます。OHzの出力周波数では、インバータは少なくとも定格出力電流を設定できます。
- 設定スイッチング周波数>定格スイッチング周波数の場合は、最大出力電流の値が小さくなります。

インバータは、最大出力電流を超えると、低速域での過負荷異常(OL2)発生または、スイッチング周波数を自動的に低下(ディレーティング)します。

次の特性曲線は、出力周波数値0Hz、1.5Hz、6Hz、10Hz、25Hz、50Hzの最大出力電流を示しています。表示されているスイッチング周波数が異なる場合は、特性曲線間で補間されます。インバータサイズ29(OCレベル:150%)を例として示します。

対応番号の説明

過電流トリップ電流 Ioc

ソフトウェア電流コントローラによる制限/_{lim}(制限はパラメータ is35で設定できます)

スイッチング周波数 2kHz

スイッチング周波数 4kHz

スイッチング周波数 8kHz

運転には使用できません。定格電流の150%で過電流(OC)異常が発生します。

図5: 低出力周波数時の過負荷特性(OL2) 例:インバータサイズ29

出力周波数毎の最大出力電流/Imは、インバータの定格出力電流/Nに対して%で表示しています。

最大出力電流/imは、設定したスイッチング周波数の値で決定されます。

それぞれのインバータサイズの値を次の表に示します。

空冷式標準ヒートシンクのスイッチング周波数毎の最大出力電流

インバータサイズ			27							
定格スイッチング周波数			4kHz							
出力周波数		f _{out} / Hz	0	1.5	6	10	25	50		
スイッチング周波数毎の最大出力電流 @ f s プロセスタイム = 62.5 μ s (パラメータ is22=0)	I _{lim} / %	2kHz	150	150	150	150	150	150		
		4 kHz	91	112	136	147	150	150		
		8kHz	36	52	66	72	82	87		
スイッチング周波数毎の最大出力電流 @ f s プロセスタイム = 71.4 µ s (パラメータ is22=1)	I _{lim} / %	1.75 kHz	150	150	150	150	150	150		
		3.5 kHz	106	129	150	150	150	150		
		7kHz	50	67	84	91	103	112		
スイッチング周波数毎の最大出力電流 @ fs プロセスタイム = 83.3 μ s (パラメータ is22=2)	I _{lim} / %	1.5 kHz	150	150	150	150	150	150		
		3kHz	120	145	150	150	150	150		
		6kHz	63	82	101	109	123	137		
スイッチング周波数毎の最大出力電流 @ f s プロセスタイム = 100 μs (パラメータ is22=3)	I _{lim} / %	1.25 kHz	150	150	150	150	150	150		
		2.5kHz	136	150	150	150	150	150		
		5kHz	77	97	118	128	144	150		
表14: インバータサイズ27 スイッチング周波数毎の最大出力電流										

インバータサイズ			28							
定格スイッチング周波数			4 kHz							
出力周波数		f _{out} / Hz	0	1.5	6	10	25	50		
スイッチング周波数毎の最大出力電流 @ f s プロセスタイム = 62.5 μ s (パラメータ is22=0)	I _{lim} / %	2kHz	122	144	150	150	150	150		
		4 kHz	74	91	110	119	134	150		
		8 kHz	29	42	54	58	66	71		
スイッチング周波数毎の最大出力電流 @ f s プロセスタイム = 71.4 μs (パラメータ is22=1)	I _{lim} / %	1.75 kHz	122	144	150	150	150	150		
		3.5kHz	86	104	129	145	150	150		
		7kHz	40	54	68	73	83	91		
		1.5kHz	122	144	150	150	150	150		
スイッチング周波数毎の最大出力電流 @ fs	I _{lim} / %	3kHz	98	117	148	150	150	150		
プロセスタイム = 83.3 μ s (パラメータ is22=2)		6 kHz	51	67	82	89	100	111		
スイッチング周波数毎の最大出力電流 @ f s プロセスタイム = 100 μs (パラメータ is22=3)	I _{lim} / %	1.25 kHz	122	144	150	150	150	150		
		2.5kHz	110	131	150	150	150	150		
		5 kHz	63	79	96	104	117	132		
表15: インバータサイズ28 スイッチング周波数毎の最大出力電流										

インバータサイズ					2	9			
定格スイッチング周波数					2 k	kHz			
出力周波数		f _{out} / Hz	0	1.5	6	10	25	50	
		2 kHz	98	116	150	150	150	150	
スイッチング周波数毎の最大出力電流 @ fs	I _{lim} / %	4 kHz	59	73	89	96	108	122	
プロセスタイム = 62.5 μ s (パラメータ is22=0)		8 kHz	24	34	43	47	53	57	
		1.75 kHz	98	116	150	150	150	150	
スイッチング周波数毎の最大出力電流 @ fs / _{lim} / %	3.5kHz	69	84	104	117	126	137		
プロセスタイム = 71.4 µs (パラメータ is22=1)		7 kHz	33	44	55	59	67	73	
		1.5 kHz	98	116	150	150	150	150	
スイッチング周波数毎の最大出力電流 @ fs	I _{lim} / %	3 kHz	79	94	119	138	144	150	
プロセスタイム = 83.3 µs (パラメータ is22=2)		6 kHz	41	54	66	71	80	90	
		1.25 kHz	98	116	150	150	150	150	
スイッチング周波数毎の最大出力電流 @ fs	I _{lim} / %	2.5kHz	88	105	134	150	150	150	
プロセスタイム = 100 µs (パラメータ is22=3)		5kHz	50	64	77	84	94	106	
表16: インバータサイズ29 スイッチング周波数毎の最大出力電流									

インバータサイズ				30 (OCレ^	いた: 15	30 (OCレベル: 150%)							
定格スイッチング周波数					2 k	Hz								
出力周波数		f _{out} / Hz	0	1.5	6	10	25	50						
		2 kHz	tbd	tbd	tbd	tbd	tbd	tbd						
スイッチング周波数毎の最大出力電流 @ fs	I _{lim} / %	4 kHz	tbd	tbd	tbd	tbd	tbd	tbd						
プロセスタイム = $62.5 \mu s$ (パラメータ is22=0)		8 kHz	tbd	tbd	tbd	tbd	tbd	tbd						
		1.75 kHz	tbd	tbd	tbd	tbd	tbd	tbd						
スイッチング周波数毎の最大出力電流 @ fs	I _{lim} / % 3	3.5kHz	tbd	tbd	tbd	tbd	tbd	tbd						
プロセスタイム = 71.4 μ s (パラメータ is22=1)	s22=1) 7		tbd	tbd	tbd	tbd	tbd	tbd						
		1.5 kHz	tbd	tbd	tbd	tbd	tbd	tbd						
スイッチング周波数毎の最大出力電流 @ fs	I _{lim} / %	3 kHz	tbd	tbd	tbd	tbd	tbd	tbd						
プロセスタイム = 83.3 μ s (パラメータ is22=2)		6kHz	tbd	tbd	tbd	tbd	tbd	tbd						
		1.25 kHz	tbd	tbd	tbd	tbd	tbd	tbd						
スイッチング周波数毎の最大出力電流 @ fs	I _{lim} / %	2.5kHz	tbd	tbd	tbd	tbd	tbd	tbd						
プロセスタイム = 100 μ s (パラメータ is22=3)		5kHz	tbd	tbd	tbd	tbd	tbd	tbd						
表17: インバータサイズ30 (OCレベル: 150%)) スイッチ	ング周波数領	更の最力	出力電	電流									

技術データ

インバータサイズ				30 (OCレ^	いし: 18	0%)			
定格スイッチング周波数			2 kHz							
出力周波数		f _{out} / Hz	0	1.5	6	10	25	50		
		2kHz	72	95	127	139	158	172		
スイッチング周波数毎の最大出力電流 @ fs	I _{lim} / %	4 kHz	40	56	77	86	100	110		
プロセスタイム = 62.5 µs (パラメータ is22=0)		8 kHz	17	27	37	42	49	54		
		1.75 kHz	72	95	126	139	158	172		
スイッチング周波数毎の最大出力電流 @ fs	I _{lim} / %	3.5 kHz	48	86	89	99	114	126		
プロセスタイム = 71.4 µs (パラメータ is22=1)		7 kHz	23	35	47	53	61	68		
		1.5 kHz	72	95	127	139	158	172		
スイッチング周波数毎の最大出力電流 @fs	I _{lim} / %	3kHz	56	76	102	113	129	141		
プロセスタイム = 83.3 µs (パラメータ is22=2)		6kHz	29	42	57	64	74	82		
		1.25 kHz	72	95	127	139	158	172		
スイッチング周波数毎の最大出力電流 @ fs	I _{lim} / %	2.5 kHz	64	85	114	126	144	156		
プロセスタイム = 100 μ s (パラメータ is22=3)		5 kHz	35	49	667	75	87	96		
表18: インバータサイズ30 (OCレベル: 180%) スイッチング周波数毎の最大出力電流										

水冷式標準ヒートシンクのスイッチング周波数毎の最大出力電流

インバータサイズ					2	7		
定格スイッチング周波数					4k	Hz		
出力周波数		f _{out} / Hz	0	1.5	6	10	25	50
		2 kHz	150	150	150	150	150	150
スイッチング周波数毎の最大出力電流 @ fs	I _{lim} / %	4 kHz	91	112	136	147	150	150
プロセスタイム = 62.5 μ s (パラメータ is22=0)		8 kHz	36	52	66	72	82	87
		1.75 kHz	150	150	150	150	150	150
スイッチング周波数毎の最大出力電流 @ fs		3.5kHz	106	129	150	150	150	150
プロセスタイム = 71.4 μ s (パラメータ is22=1)		7 kHz	50	67	84	91	103	112
		1.5 kHz	150	150	150	150	150	150
スイッチング周波数毎の最大出力電流 @ fs	I _{lim} / %	3 kHz	120	145	150	150	150	150
プロセスタイム = 83.3 μ s (パラメータ is22=2)		6 kHz	63	82	101	109	123	137
		1.25 kHz	150	150	150	150	150	150
スイッチング周波数毎の最大出力電流 @ fs	I _{lim} / %	2.5kHz	136	150	150	150	150	150
プロセスタイム = 100 μ s (パラメータ is22=3)		5kHz	77	97	118	128	144	150
表19: インバータサイズ27 スイッチング周波数毎の最大出力電流								

インバータサイズ					2	8		
定格スイッチング周波数					4 k	Hz		
出力周波数		f _{out} / Hz	0	1.5	6	10	25	50
		2 kHz	122	144	150	150	150	150
スイッチング周波数毎の最大出力電流 @ fs	I _{lim} / %	4 kHz	74	91	110	119	134	150
プロセスタイム = 62.5 μ s (パラメータ is22=0)	マータ is22=0) 8		29	42	54	58	66	71
		1.75 kHz	122	144	150	150	150	150
スイッチング周波数毎の最大出力電流 @ fs	流 @f s		86	104	129	145	150	150
プロセスタイム = 71.4 μ s (パラメータ is22=1)		7kHz	40	54	68	73	83	91
		1.5kHz	122	144	150	150	150	150
スイッチング周波数毎の最大出力電流 @ fs	I _{lim} / %	3 kHz	98	117	148	150	150	150
プロセスタイム = 83.3 μ s (パラメータ is22=2)		6 kHz	51	67	82	89	100	111
		1.25 kHz	122	144	150	150	150	150
スイッチング周波数毎の最大出力電流 @ fs	I _{lim} / %	2.5kHz	110	131	150	150	150	150
プロセスタイム = 100 μ s (パラメータ is22=3)		5 kHz	63	79	96	104	117	132
表20: インバータサイズ28 スイッチング周波数	女毎の最っ	七出力電流	•					

インバータサイズ					2	9		
定格スイッチング周波数					2 k	Hz		
出力周波数		f _{out} / Hz	0	1.5	6	10	25	50
		2kHz	98	116	150	150	150	150
スイッチング周波数毎の最大出力電流 @ fs	I _{lim} / %	4 kHz	59	73	89	96	108	122
プロセスタイム = 62.5 μ s (パラメータ is22=0)	rs (パラメータ is22=0) {		24	34	43	47	53	57
		1.75 kHz	98	116	150	150	150	150
スイッチング周波数毎の最大出力電流 @ fs	力電流 @ f s	3.5 kHz	69	84	104	117	126	137
プロセスタイム = 71.4 µs (パラメータ is22=1)		7 kHz	33	44	55	59	67	73
		1.5 kHz	98	116	150	150	150	150
スイッチング周波数毎の最大出力電流 @ fs	I _{lim} / %	3kHz	79	94	119	138	144	150
プロセスタイム = 83.3 μ s (パラメータ is22=2)		6kHz	41	54	66	71	80	90
		1.25 kHz	98	116	150	150	150	150
スイッチング周波数毎の最大出力電流 @ fs	I _{lim} / %	2.5 kHz	88	105	134	150	150	150
プロセスタイム = 100 µs (パラメータ is22=3)		5kHz	50	64	77	84	94	106

インバータサイズ				30 (OCレ^	いし: 15	0%)	
定格スイッチング周波数					2 k	Hz		
出力周波数		f _{out} / Hz	0	1.5	6	10	25	50
		2kHz	tbd	tbd	tbd	tbd	tbd	tbd
スイッチング周波数毎の最大出力電流 @ fs	I _{lim} / %	4 kHz	tbd	tbd	tbd	tbd	tbd	tbd
プロセスタイム = 62.5 μ s (パラメータ is22=0)		8kHz	tbd	tbd	tbd	tbd	tbd	tbd
		1.75 kHz	tbd	tbd	tbd	tbd	tbd	tbd
スイッチング周波数毎の最大出力電流 @ fs	I _{lim} / %	3.5 kHz	tbd	tbd	tbd	tbd	tbd	tbd
プロセスタイム = 71.4 μ s (パラメータ is22=1)		7kHz	tbd	tbd	tbd	tbd	tbd	tbd
		1.5 kHz	tbd	tbd	tbd	tbd	tbd	tbd
スイッチング周波数毎の最大出力電流 @fs	I _{lim} / %	3kHz	tbd	tbd	tbd	tbd	tbd	tbd
プロセスタイム = 83.3 μ s (パラメータ is22=2)		6kHz	tbd	tbd	tbd	tbd	tbd	tbd
		1.25 kHz	tbd	tbd	tbd	tbd	tbd	tbd
スイッチング周波数毎の最大出力電流 @ fs	I _{lim} / %	2.5 kHz	tbd	tbd	tbd	tbd	tbd	tbd
プロセスタイム = 100 μ s (パラメータ is22=3)		5kHz	tbd	tbd	tbd	tbd	tbd	tbd
表22: インバータサイズ30 (OCレベル: 150%)	スイッチ	ング周波数領	事の最力	出力冒	 電流			

インバータサイズ				30 (OCレ^	いた: 18	0%)			
定格スイッチング周波数			2 kHz							
出力周波数		f _{out} / Hz	0	1.5	6	10	25	50		
		2 kHz	72	95	127	139	158	172		
スイッチング周波数毎の最大出力電流 @fs	I _{lim} / %	4 kHz	40	56	77	86	100	110		
プロセスタイム = 62.5 μ s (パラメータ is22=0)	s (パラメータ is22=0)		17	27	37	42	49	54		
		1.75 kHz	72	95	126	139	158	172		
スイッチング周波数毎の最大出力電流 @ fs / _{lim} / %	3.5kHz	48	86	89	99	114	126			
プロセスタイム = 71.4 μ s (パラメータ is22=1)	⊽ is22=1)		23	35	47	53	61	68		
		1.5 kHz	72	95	127	139	158	172		
スイッチング周波数毎の最大出力電流 @fs	I _{lim} / %	3 kHz	56	76	102	113	129	141		
プロセスタイム = 83.3 μ s (パラメータ is22=2)		6 kHz	29	42	57	64	74	82		
		1.25 kHz	72	95	127	139	158	172		
スイッチング周波数毎の最大出力電流 @fs	I _{lim} / %	2.5kHz	64	85	114	126	144	156		
プロセスタイム = 100 µs (パラメータ is22=3)		5kHz	35	49	667	75	87	96		
表23: インバータサイズ30 (OCレベル: 180%) スイッチング周波数毎の最大出力電流										

3.2.4 定格運転中の電力損失

インバータサイズ		27	28	29	3	0	
過電流トリップ電流		I _{OC} / %		1	50		180
定格運転中の電力損失	1)	P_D / kW	3	3.8	3.88	tbd	5.27
表24: 400Vユニットの電力損失					•		

¹⁾ 定格動作は U_N = 400Vに対応します。 f_{SN} ; I_N ; f_N = 50Hz (標準値)

技術データ

3.2.5 インバータのヒューズ保護

			最大ヒューズ容量(A))
インバー タサイズ	<i>U_N</i> = 400V gG (IEC)	<i>U</i> _N = 480V クラス「J」		<i>U_N</i> = 480V aR
	SCCR 100 kA	SCCR 18kA	SCCR 100 kA	タイプ ¹⁾
27	500	400	400	COOPER BUSSMANN 170M3xx9 COOPER BUSSMANN 170M3069 COOPER BUSSMANN 170M3119 COOPER BUSSMANN 170M3269 LITTELFUSE L70QS400.X SIBA 206xy32.400
28	500	500	500	COOPER BUSSMANN 170M3021 COOPER BUSSMANN 170M3121 COOPER BUSSMANN 170M3171 COOPER BUSSMANN 170M3271 LITTELFUSE L70QS500.X SIBA 206xy32.500
29	630	600	550	COOPER BUSSMANN 170M3022 COOPER BUSSMANN 170M3122 COOPER BUSSMANN 170M3172 COOPER BUSSMANN 170M3272 SIBA 206xy32.550
			600	LITTELFUSE L70QS600.X
30	630	600	630	COOPER BUSSMANN 170M3023 COOPER BUSSMANN 170M3123 COOPER BUSSMANN 170M3173 COOPER BUSSMANN 170M3273 SIBA 206xy32.630
			600	LITTELFUSE L70QS600.X
表25: 4	00V/480Vユニット	の保護		

 $^{^{1)}}$ 「x」はさまざまな指標を表します。「y」は、さまざまな接続バリエーションを表します。

短絡容量

EN 60439-1およびEN 61800-5-1の要件によれば、主電源への接続には以下が適用されます。ユニットは、影響を受けない対称短絡電流が100kA以下の電力を供給できる回路での使用に適しています。

3.3 一般的な電気データ

3.3.1 スイッチング周波数と温度

インバータの冷却は、定格条件下で最大ヒートシンク温度を超えないように設計されています。定格スイッチング周波数よりも高いスイッチング周波数では、損失が大きくなり、ヒートシンクの温度も高くなります。

ヒートシンクの温度が T_{DR} を上回った場合、ヒートシンク過熱異常が発生しないように、自動でスイッチング周波数を段階的に下げることができます。ヒートシンクの温度が T_{UR} を下回ると、設定したスイッチング周波数に戻ります。温度 T_{EM} を上回ると直ちに定格スイッチング周波数まで下がります。この機能を使用するには、「ディレーティング」を有効にする必要があります。

3.3.1.1 空冷式標準ヒートシンクのスイッチング周波数と温度

インバータサイズ		27	28	29	3	0	
過電流トリップ電流	loc / %		15	50		180	
定格スイッチング周波数 1)	f _{SN} / kHz	4	4	2	2	2	
最大スイッチング周波 1)	$f_{S_{max}}$ / kHz	8	8	8	8	8	
最小スイッチング周波数 1)	f _{S_min} / kHz	1.25	1.25	1.25	1.25	1.25	
最大ヒートシンク温度	T _{HS} / °C	tbd	85	85	tbd	97	
スイッチング周波数を下げるための温度	T _{DR} / °C	tbd	75	75	tbd	85	
スイッチング周波数を上げるための温度	T _{UR} / °C	tbd	65	65	tbd	75	
定格スイッチング周波数に切り替えるための温度	T _{EM} / °C	tbd	80	80	tbd	90	
表26: 空冷式標準ヒートシンクのスイッチング周波数と温度							

¹⁾ スイッチング周波数の1/10を超えないように出力周波数が限定されます。

過電流トリップ電流180%対応のインバータサイズ30の空冷式標準インバータ

ヒートシンクファンの出口温度45℃の場合:最大サイクルタイム120秒、 ED80%を遵守してください。

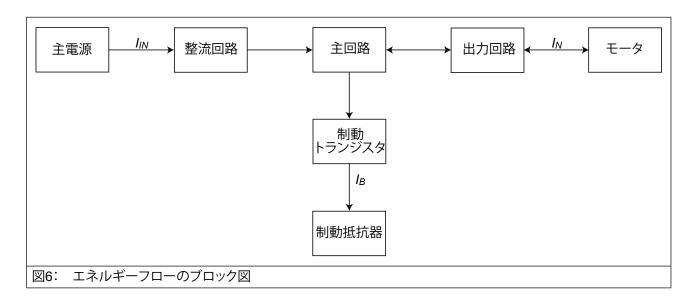
3.3.1.2 水冷式標準ヒートシンクのスイッチング周波数と温度

インバータサイズ		27	28	29	3	0
過電流トリップ電流	I _{OC} / %		15	50		180
定格スイッチング周波数 1)	f _{SN} / kHz	4	4	2	2	2
最大スイッチング周波数 1)	f _{S_max} / kHz	tbd	8	8	8	8
最小スイッチング周波数 1)	f _{S_min} / kHz	1.25	1.25	1.25	1.25	1.25
最大ヒートシンク温度	T _{HS} / °C	tbd	70	70	73	78
スイッチング周波数を下げるための温度	T _{DR} / °C	tbd	60	60	63	68
スイッチング周波数を上げるための温度	T _{UR} / °C	tbd	50	50	53	58
定格スイッチング周波数に切り替えるための温度	T _{EM} / °C	tbd	65	65	68	73
表27: 水冷式標準ヒートシンクのスイッチング周波数と温度						

¹⁾ スイッチング周波数の1/10を超えないように出力周波数が限定されます。

3.3.2 主回路/制動トランジスタ機能

制動トランジスタ機能の動作


制動トランジスタを使用できるようにするには、「is30 braking transistor function」 パラメータを使用して機能を有効にする必要があります。

ホームページ(www.keb.de)から「F6 Programming manual」で検索してください。

NOTICE

最小制動抵抗値を下回る抵抗器接続によるインバータの故障

▶ 最小制動抵抗値を下回ってはいけません!

NOTICE

インバータの故障

「ERROR GTR7 always ON」というエラーが発生した場合、AC電源の主電源入力ブリッジを介して内部で消費電流がオフになります。

▶ インバータは、主電源を5分以内にオフにする必要があります。

インバータサイズ			27	28	29	30
主回路の定格電圧(U _N = 400V時)		U _{N_dc} / V	565			
主回路の定格電圧(U _{N_UL} = 480V時)		U _{N_dc_UL} / V	680			
主回路の動作電圧範囲		U _{IN_dc} / V		390~	~780	
不足電圧レベル「Error! Underpotential」		U _{UP} / V		24	10	
過電圧レベル「Error! Overpotential」		U _{OP} / V	840			
制動トランジスタの動作電圧レベル	1)	U _B / V	780			
最大制動電流		I _{B_max} / A	380			
最小制動抵抗値		R_{B_min} / Ω	2.2			
制動トランジスタ	3)		最大サイクルタイム: 120秒、 ED:50%		20秒、	
制動トランジスタの保護機能			短絡監視			
制動トランジスタの保護機能 (エラー GTR7 常時 ON)	2)		フィードバック信号の監視と 電源遮断		視と	
コンデンサの容量 C / μF 9900 11700 15600			15600	18600		
表28: 400Vユニットの主回路/制動トランジスタ機能						

¹⁾ 制動トランジスタの動作電圧レベルは調整可能です。表に示されている値はデフォルト値です。

3.3.3 ヒートシンク取付制動抵抗器

ヒートシンク取付制動抵抗器の技術データ				
制動抵抗値	R/Ω	2.25		
定格電力	P_D / W	2120		
120秒を基準とするサイクルタイム 係数(<i>U_{N_dc}</i> = 780V時)	E _D / s	0.62		
表29: ヒートシンク取付制動抵抗器				

NOTICE

ヒートシンク取付制動抵抗器の電力損失を注意してください

ヒートシンク取付制動抵抗器での制動は、ヒートシンクの電力損失が増加します。

▶ 冷却システムを設計する際には、制動抵抗器の電力損失を考慮してください。

²⁾ フィードバック信号の監視は、制動トランジスタの機能を監視します。電源はAC電源の内部主電源入力ブリッジを介してオフになります。

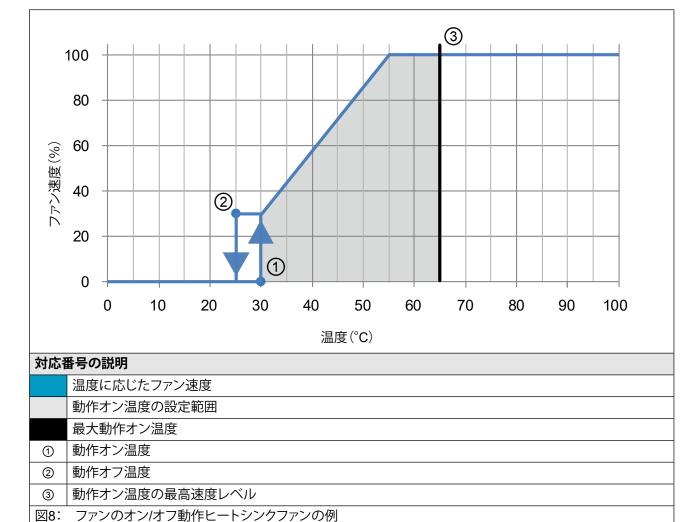
³⁾ 使用する制動抵抗器により、サイクルタイムはさらに制限されます。

技術データ

3.3.4 ファン

インバータサイズ		27	28	29	30	
ハウジング	数量		2	2		
循環用ファン	速度可変	有				
ヒートシンクファン	数量		2	2		
	速度可変	有				
図7: ファン						

ファンの速度は調整可能です。ソフトウェアの設定に応じて、自動的に高速または低速に制御されます。

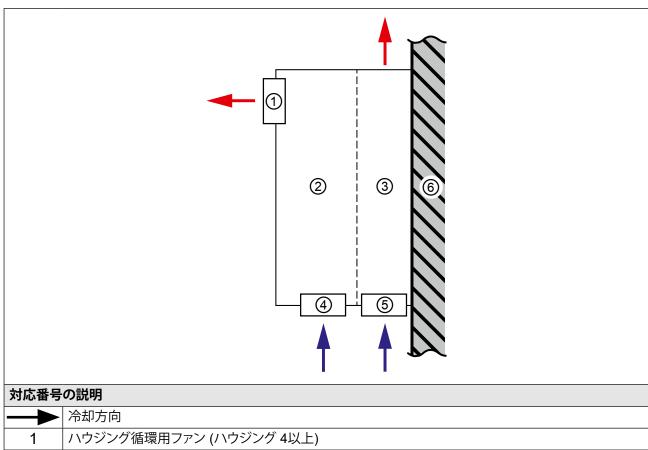

NOTICE

ファンの故障!

▶ ファンに異物が入らないように注意してください!

3.3.4.1 ファンのオン/オフ動作

ファンには動作オン温度と動作オフ温度があります。

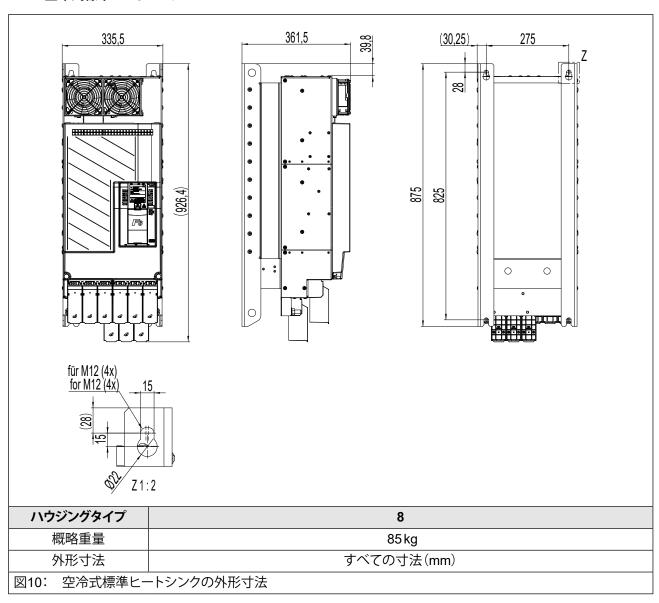


3.3.4.2 ファンのオン/オフ温度

ファンの動作オン温度と最大速度レベルは設定可能です。デフォルト値は次の表に示します。

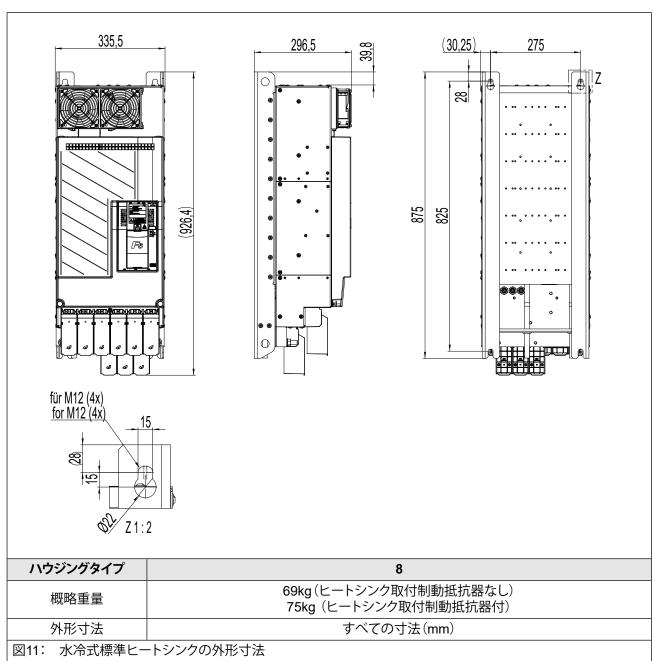
ファン		ヒートシンク	ハウジング内部		
動作オン温度	T/°C	30	20		
最高速度レベル	T/°C	65	40		
表30: ファンのオン/オフ温度					

3.3.4.3 ファンの冷却方向

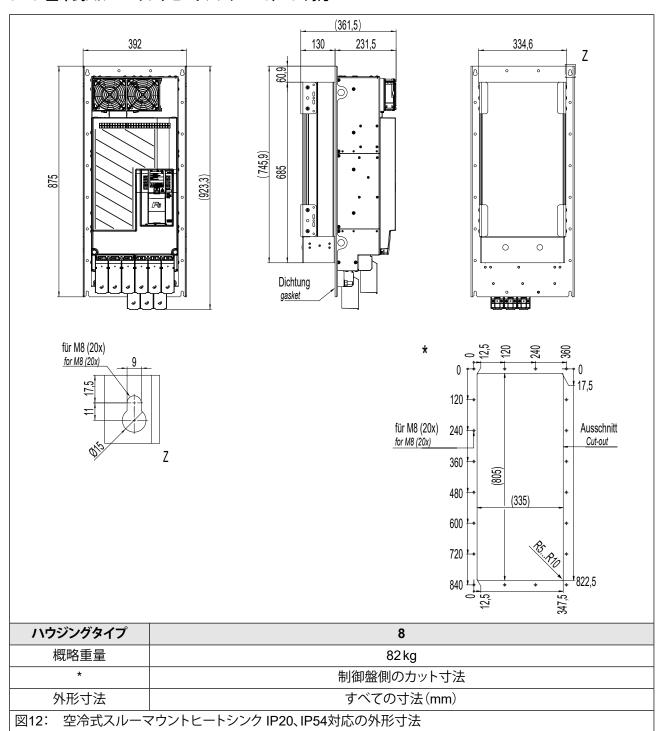


対応番号	対応番号の説明				
→	冷却方向				
1	ハウジング循環用ファン (ハウジング 4以上)				
2	インバータ (ハウジング)				
3	インバータ (ヒートシンク)				
4	ハウジング循環用ファン (ハウジング2および3)				
5	ヒートシンクファン				
6	制御盤取り付け面				
図9: フ					

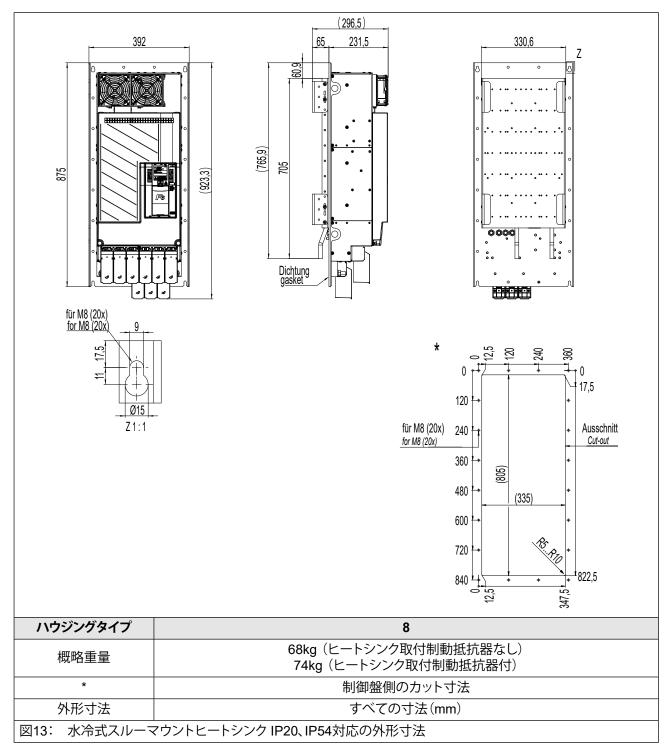
技術データ


3.4 外形寸法と概略重量

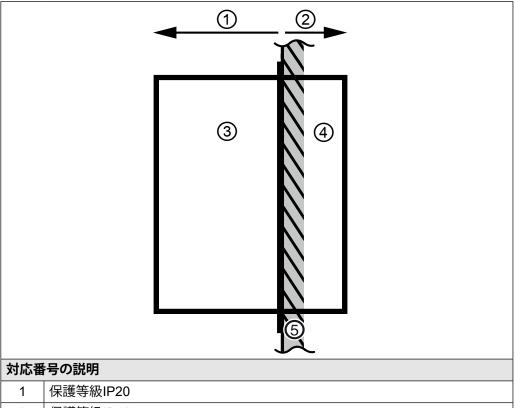
3.4.1 空冷式標準ヒートシンク



3.4.2 水冷式標準ヒートシンク



3.4.3 空冷式スルーマウントヒートシンク IP20、IP54対応



3.4.4 水冷式スルーマウントヒートシンク IP20、IP54対応

3.4.5 スルーマウントヒートシンクIP54対応の取付

対応番	対応番号の説明		
1	保護等級IP20		
2	保護等級IP54		
3	KEBコンビバート		
4	ヒートシンク		
5	制御盤取り付け面		
図14:	スルーマウントヒートシンクIP54対応の取付		

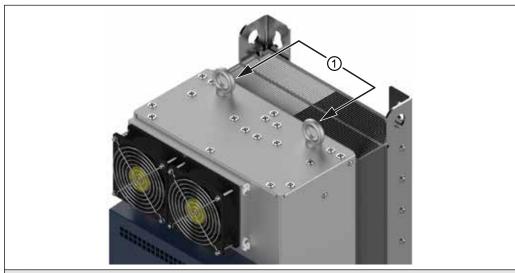
保護等級IP54:制御盤外のヒートシンク部分

保護等級IP54は、インバータが適切に制御盤へ設置された場合にのみ達成されます。適切に設置するために、オプションの密閉シール(=>「4.3.2 スルーマウントヒートシンクIP54対応用密閉シール」)をヒートシンクと制御盤取り付け面に設置する必要があります。適切に設置された場合、制御盤外のヒートシンク部分は、保護等級IP54になります。

空冷式スルーマウントヒートシンクの場合は、ヒートシンクファンを可燃性、油性または危険な蒸気またはガス、腐食性化学物質、粗大な破片および過度の粉塵から保護する必要があります。

保護等級IP20:制御盤内のインバータ部分

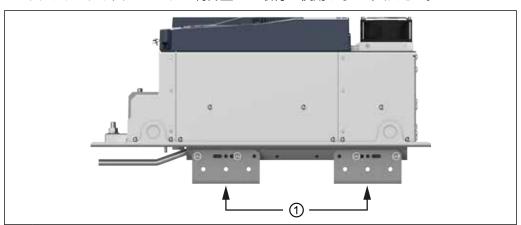
インバータは、必要な保護等級に適した制御盤に設置することを目的としています。


制御盤内のインバータ部分の保護等級については、「3.1.1 周囲環境条件」を参照してください。

UL:ヒートシンクはNEMAタイプ1に分類されます。

3.4.6 制御盤の取付

ハウジング7、8、9のインバータには、ハウジング上部にM10アイボルト(DIN580)を取り付けることができます。制御盤への取付時に、このアイボルトを使用します。


対応番号の説明

1 M10アイボルト

図15: F6ハウジング8にM10アイボルト取付

3.4.6.1 フットブラケット付きインバータ

インバータ取り付け後、フットブラケットを取り外すことができます。取り外したフットブラケットは、インバータ輸送・保管時に再度使用できるよう管理・保管願います。 フットブラケットは、インバータの制御盤への取付に使用しないでください。

対応番号の説明

1 フットブラケット

図16: F6ハウジング7にフットブラケット取付

NOTICE

冷却水接続部の損傷

冷却水継手の変形!

▶ フットブラケットを外した状態でインバータを置いたり、輸送しないでください!

3.4.6.2 設置手順

インバータを取り付けるために、以下の部品とそれに対応する品質をKEBにてテストしました。

必要な部品	締付トルク
六角ボルト ISO 4017 - M12 - 8.8 (亜鉛メッキ)	80 Nm 705 lb inch
平ワッシャー ISO 7090 - 12 - 200 HV(亜鉛メッキ)	_
表31: 標準ヒートシンクの設置手順	

必要な部品	締付トルク
六角ボルト ISO 4017 - M8 - 8.8 (亜鉛メッキ)	22 Nm 190 lb inch
平ワッシャー ISO 7090 - 8 - 200 HV (亜鉛メッキ)	_
表32: スルーマウントヒートシンクの設置手順	

NOTICE

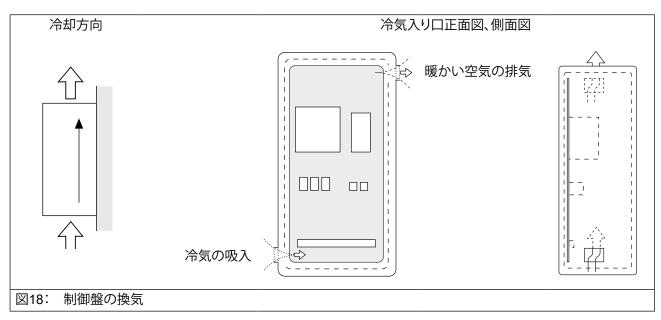
他の部品の使用

▶ 代替的に選択する部品は、上記の材料特性(品質)と締付トルクを満たしている必要があります!

他の部品の使用については、KEBにてテストを行っていないため、使用についてはお客様の責任となります。

3.4.6.3 取り付けスペース

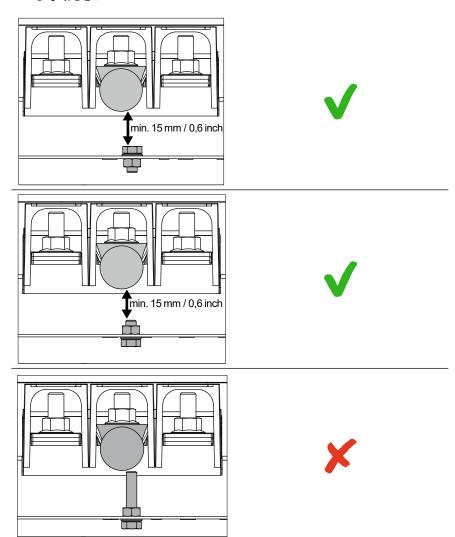
制御盤寸法の電力損失 => 「3.2.4 定格運転中の電力損失」動作モード/使用率に応じて、これより低い値を使用できます。



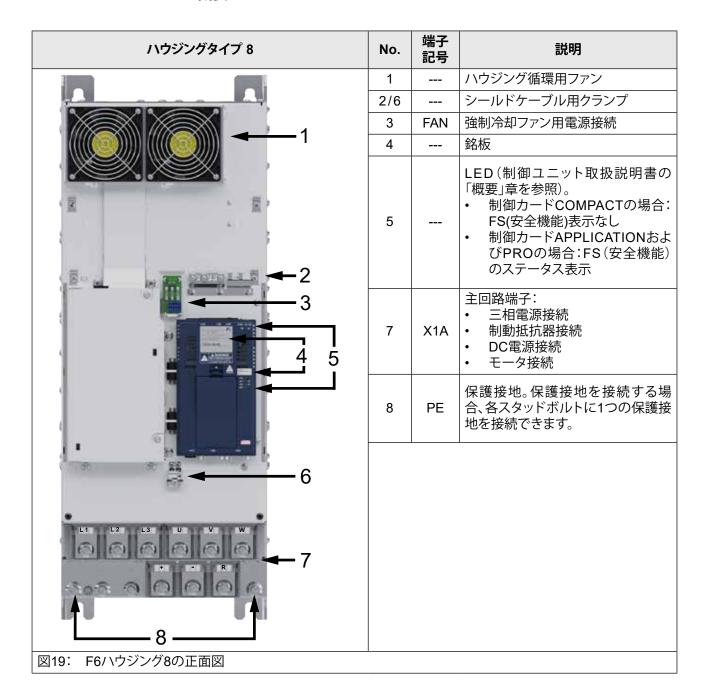
最適な冷却能力(流量)を実現する

最適な冷却能力(流量)を得るには、インバータを平らな取付プレートに隙間なく設置する必要があります。

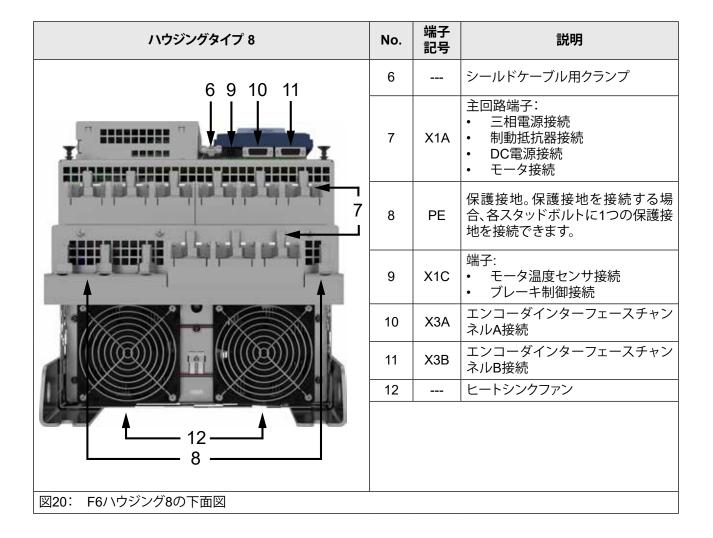
取り付けスペース	寸法	距離(mm)	距離 (inch)	
	А	150	6	
	В	100	4	
A E	С	30	1.2	
	D	0	0	
	Е	0	0	
	F 1)	50	2	
F B	1) インバータ正面から制御盤扉までの距離			
図17: 取り付けスペース				

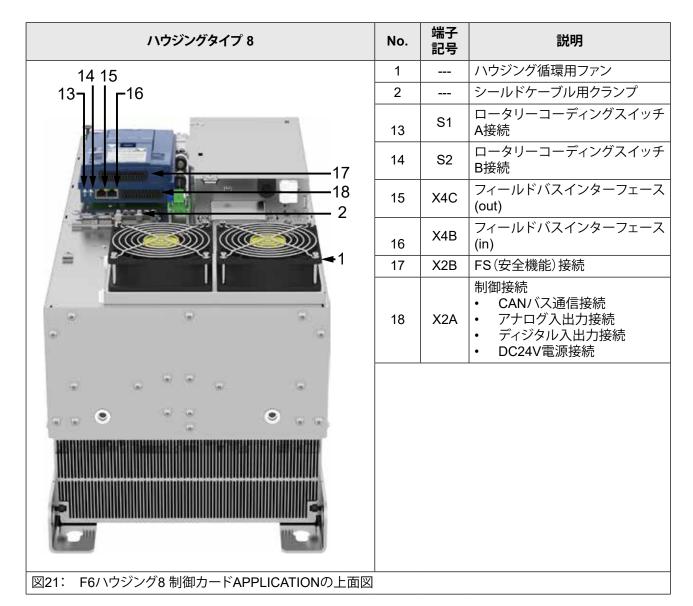

ファンを使用して制御盤内を冷却する場合は、フィルタを使用して異物の侵入を防止してください。

NOTICE


電圧変動!

- ▶ スルーマウントヒートシンク取付ネジの長さを確認してください!
- ▶ ケーブルとネジの間に少なくとも15mm(0.6インチ)の絶縁距離を確保してください!




4 設置と接続

4.1 COMBIVERT F6の概要

設置と接続

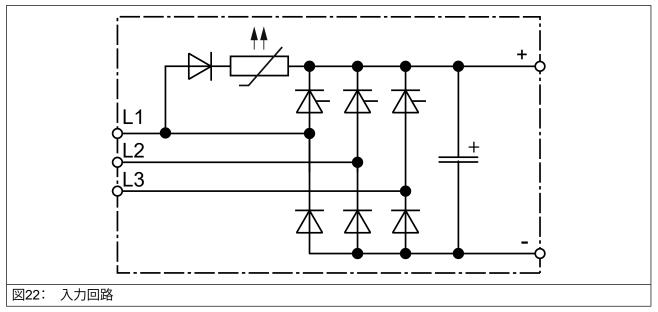
詳細については、それぞれの制御カードの取扱説明書を参照してください。

F6-A制御取扱説明書に関する情報は、下記参照願います。 www.keb.de/fileadmin/media/Manuals/dr/ma_dr_f6-cu-a-inst-20118593_en.pdf

F6-C制御取扱説明書に関する情報は、下記参照願います。 www.keb.de/fileadmin/media/Manuals/dr/ma_dr_f6-cu-k-inst-20144795_en.pdf

F6-P制御取扱説明書に関する情報は、下記参照願います。 www.keb.de/fileadmin/media/Manuals/dr/ma_dr_f6-cu-p-inst-20182705_en.pdf

4.2 主回路の接続


NOTICE

インバータの故障!

▶ 入力側と出力側の接続を間違わないでください!

4.2.1 電源供給の接続

COMBIVERT F6ハウジング8は、端子L1、L2、L3を介して電源から給電できます。

電源ON/OFFの間隔は最低5分空けて行ってください。

電源ON/OFFを短時間で行うと、入力のPTCサーミスタの抵抗値が一時的に高くなります。抵抗値が下がるとインバータは自動的に復帰します。

4.2.1.1 400Vユニットの主回路端子台X1A

機能	端子接続タイプ	締付トルク	接続ケーブルの 最大数
三相電源接続			
モータ接続	M12スタッドボルト		2
		3 10 15 111611	
DC電源技徒			
制動抵抗器接続			
	三相電源接続 モータ接続 DC電源接続	三相電源接続 モータ接続 M12スタッドボルト DC電源接続 制動抵抗器接続	三相電源接続 M12スタッドボルト 35 Nm 310 lb inch DC電源接続 制動抵抗器接続

図23: 400Vユニットの主回路端子台X1A

4.2.2 保護接地と機能接地

保護接地と機能接地を同じ端子に接続しないでください。

4.2.2.1 保護接地

保護アース(PE)は、電気的安全性、特にエラーが発生した場合の個別保護に役立ちます。

A CAUTION

誤ったケーブルサイズ使用による感電!

▶ 接地に使用するケーブルサイズは、DIN IEC 60364-5-54に従って選択する必要があります。

端子 記号	機能	端子接続タイプ	締付トルク	接続ケーブルの最大数
4	保護接地の接続	M12スタッドボルト	35 Nm 310 lb inch	1
図24:	保護接地の接続			

PE端子の誤った接続

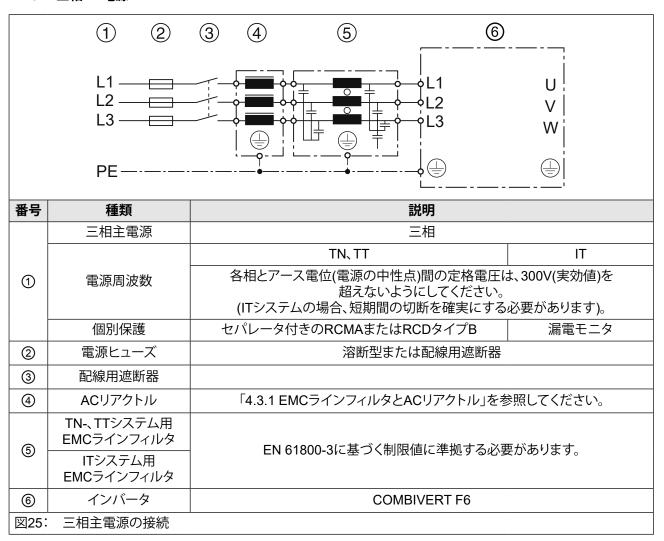
PE端子へ圧着端子付きのケーブルを接続する場合は、インバータのM12スタットボルトとM12フランジ付きナットを使用してください。

4.2.2.2 機能接地

EMC規格で、インバータまたはシステム間で、同電位化が必要な場合は、機能接地も必要 になる場合があります。

インバータがEMC規格で配線されている場合、追加の機能接地(FE)は必要ありません。

機能接地は緑/黄色で配線しないでください!


EMC準拠の設置に関する情報は、下記を参照してください。 www.keb.de/fileadmin/media/Manuals/emv/0000neb0000.pdf

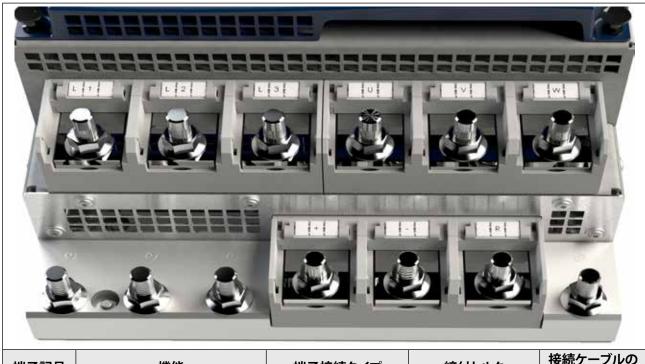
4.2.3 AC主電源接続

4.2.3.1 三相AC電源

4.2.3.2 電源ケーブル

電源ケーブルのケーブルサイズは、以下の項目にて選定します。

- インバータの入力電流
- ケーブルの種類
- 設置方法と周囲温度
- 地域の電気規制

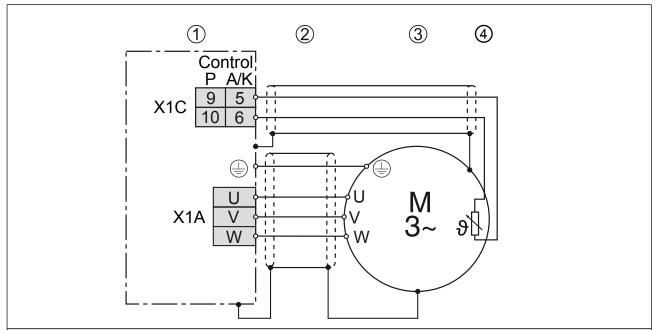

プロジェクトエンジニアが設計を担当します。

4.2.4 DC電源接続

NOTICE

DC電源での運転は、KEBと相談の上でのみ許可されます!

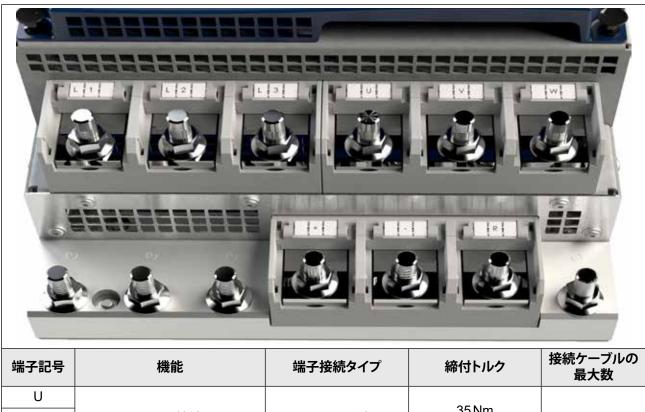
4.2.4.1 端子台X1A DC電源接続



端子記号	機能	端子接続タイプ	締付トルク	接続ケーブルの 最大数	
+	DC電源接続	M12スタッドボルト	35 Nm	2	
-		WIIZXXXXIAVVI	310 lb inch		
図26: 端子台X1A DC電源接続					

4.2.5 モータ接続

4.2.5.1 モータの配線

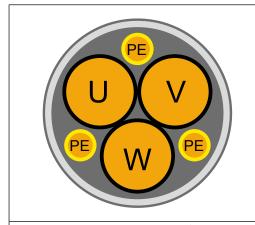


対応番号の説明

- ① KEBコンビバート
- ② モータケーブルを接続し、金属フレームまたは取付けプレートの広い面の両端をシールドします(必要に応じて塗装を取り除きます)。
- ③ 三相モータ
- ④ | 温度監視(オプション) => 制御ユニット取扱説明書を参照してください。
- 図27: モータの配線

設置と接続

4.2.5.2 端子台X1Aモータ接続


端子記号	機能	端子接続タイプ	締付トルク	接続ケーブルの 最大数
U			QE Nine	
V	モータ接続	M12スタッドボルト	35 Nm 310 lb inch	2
W				
図28: 端	図28: 端子台X1Aモータ接続			

4.2.5.3 モータケーブルの選定

モータケーブルが長く低出力の場合、配線とモータケーブルの選定が重要になります。フェライトコアおよびシールドケーブル(位相/位相<65pF/m、位相/スクリーン<120pF/m)の使用で、以下のような効果があります。

- 主要なモータケーブルの長さを許可 (「4.2.5.4 AC入力でのモータケーブル長に応じた伝導妨害」を参照してください)
- EMC特性向上(アースへのコモンモード出力電流の削減)

容量の大きいモータ (30kW以上) には、対称的にデザインされたシールドケーブルの使用を推奨します。このケーブルはアース線が3本で構成され、動力線間に均等に配置されています。地域によっては、アース線を使用しないケーブルの使用が可能なところもあります。その場合は、アース線を外部に接続する必要があります。ケーブルによってはシールドがアース線の役割を果たしているものもあります。ケーブルメーカーのデータに注意してください。

図29: 対称的なモータケーブル

4.2.5.4 AC入力でのモータケーブル長に応じた伝導妨害

モータケーブルの最大長は、モータケーブルの容量とEMC放射干渉に依存します。ここでは外部対策を講じる必要があります(EMCラインフィルタの使用など)。以下の情報は、定格条件下で、「4.3.1 EMCラインフィルタとACリアクトル」の章に記載されているKEB製のフィルタを使用した場合に適用されます。

	EN 61800-3に従ってシールドされた
	最大モータケーブル長
インバー	カテゴリC2
インバー タサイズ	モータケーブル(低容量)
27	
28	30 m ¹⁾
29	30111
30	
表33: 最	最大モータケーブル長

¹⁾より長いケーブルは、KEBと相談の上でのみ許可されます。

モータリアクトルまたはモータフィルタを使用すると、ケーブル長がかなり長くなる可能性があります。KEBは、25mのケーブル長からの使用を推奨しています。

4.2.5.5 モータ並列運転のモータケーブル長

モータの並列運転、または複数のケーブルを使用した並列接続の場合のモータケーブル 長は、下記の式から求めることができます。

モータケーブル長 = Σ 単一ケーブル長 x $\sqrt{E-485}$ モータケーブルの数

4.2.5.6 モータケーブルのサイズ

モータケーブルのサイズは下記の条件によって異なります。

- 出力電流の特性(例:高調波成分)
- モータ電流の実際の実効値
- ケーブル長
- ケーブルの種類
- 結束や温度などの環境条件

4.2.5.7 モータの接続

NOTICE

モータの動作がおかしい!

▶ モータメーカーの接続手順に従ってください!

電圧ピークからモータを保護してください!

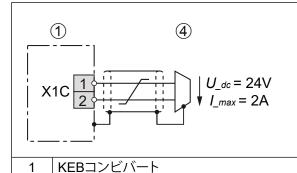
▶ インバータは、高dv/dtで出力が切り替わります。長いモータケーブル (>15m)では、モータで電圧ピークが発生し、絶縁システムを危険にさら す可能性があります。モータリアクトル、dv/dtフィルタ、または正弦波フィルタを使用して、モータを保護できます。

4.2.5.8 温度監視とブレーキ制御の接続(X1C)

インバータには切り替え可能な温度センサの監視機能が搭載されています。

各種監視モードが用意されています。これらは制御カードによって異なります
⇒ COMBIVERT F6の制御取扱説明書を参照してください。

X1C	PIN	端子記号	説明
	1	BR+	ブレーキ制御/出力 +
	2	BR-	ブレーキ制御/出力 -
	3	reserved	_
2 4 6	4	reserved	_
	5	TA1	温度検出/出力 +
	6	TA2	温度検出/出力 -
図30: 制御カードAPPLICAT	ONT	 よびCOMPACT用端子台X10	


X1C	PIN	端子記号	説明
	1	BR+	ブレーキ制御/出力 +
	2	BR-	ブレーキ制御/出力 -
	3	0V	フィードバック入力の供給用
	4	24Vout	フィードハック八月の浜稲用
2 4 6 8 10	5	DIBR1	ブレーキおよびリレー用のフィードバック入力1
	6	DIBR2	ブレーキおよびリレー用のフィードバック入力2
	7	reserved	_
	8	reserved	_
	9	TA1	温度検出/出力 +
	10	TA2	温度検出/出力 -
図31: 制御カードPRO用端子台X1C			

NOTICE

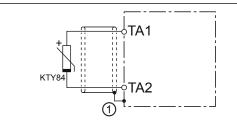
誤ったケーブルまたは接続による故障!

ノイズによる制御の誤動作。

- ► モータからの温度検出用接続ケーブル(シールドも含む)を制御用ケーブルと一緒に接続しないでください。
- ► モータケーブル内に、温度検出用のケーブルがある場合は、温度検出 用ケーブルに追加でシールド(二重シールド)が必要です。
- ▶ 温度検出の入力は基本的に絶縁されています。

4 ブレーキ

図32: ブレーキ制御の接続


制御カードAPPLICATIONおよびCOMPACT用

ブレーキ制御用の電源は、内部電源(インバータ内部)と分かれています。ブレーキ制御機能を使用する場合は外部電源を使用してください。

制御カードPRO用

ブレーキ制御用の電源は、内部電源(インバータ内部)と外部電源のどちらかを使用できます。電圧許容差と出力電流は、内部または外部の電源によって異なります。

それぞれの制御カードの仕様については、COMBIVERT F6の制御取扱説明書を参照してください。

KTYセンサは極性を持つ半導体であり、順方向に接続する必要があります。+極をTA1に、一極をTA2に接続してください。上記の手順を遵守してください。それを守らないと、温度の上限値の測定に誤りが生じます。また、モータ巻線の保護は保証されなくなります。

1 シールドプレートを介した接続 (使用できない場合は、取付けプレートに接続します)。

図33: KTYセンサの接続

NOTICE

接続が正しくない場合、モータ巻線の温度保護はできません。

- ▶ KTYセンサを順方向に接続します。
- ▶ KTYセンサを他のセンサと組み合わせて接続しないでください。

温度監視とブレーキ制御の配線に関する詳細は、COMBIVERT F6の制御取扱説明書に記載されています。

4.2.6 制動抵抗器の接続と使用

A CAUTION

制動抵抗器使用による火災リスク!

▶ 温度監視機能付きの制動抵抗器を使用するか、適切な監視機能/回路を使用することにより、火災のリスクを大幅に低減できます。

NOTICE

最小制動抵抗値を下回ると、インバータが故障します!

▶ 最小制動抵抗値を下回らないでください! => 「3.2 400Vクラスのユニットデータ」を参照してください。

A CAUTION

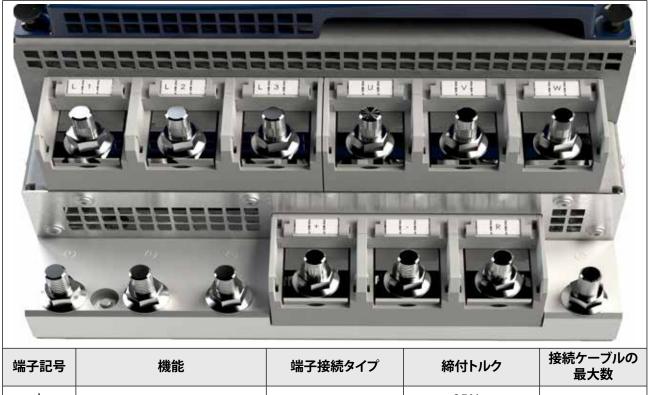
負荷(回生エネルギー)によって制動抵抗器の表面が高温になります!

- ▶ 制動抵抗器の表面を覆い、触れても安全なようにします。
- ▶ 表面に触れる前に確認してください。

やけどに注意してください!

▶ 必要に応じて、高温注意などの警告を表示してください。

4.2.6.1 サイドマウント式制動抵抗器の取付手順


制動抵抗器の取付手順は、下記を参照してください。

https://www.keb.de/fileadmin/media/Manuals/dr/ma_dr_safe-braking-resistors-20106652_en.pdf

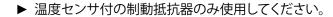
設置と接続

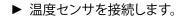
4.2.6.2 端子台X1A制動抵抗器接続

+ 35 Nm 制動抵抗器接続 M12スタッドボルト 2 310 lb inch R

図34: 端子台X1A制動抵抗器接続

ヒートシンク取付制動抵抗器付のインバータの場合、外部制動抵抗器を端子Rへ 接続することは許可されていません。



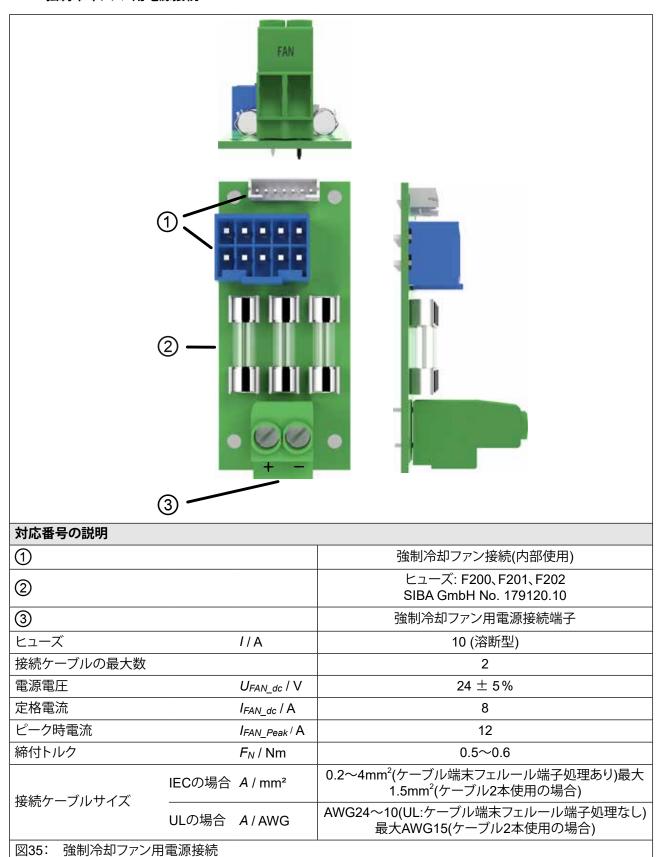

4.2.6.3 温度監視を行わない制動抵抗器の使用

WARNING

温度監視を行わない制動抵抗器の使用

過負荷または故障の場合、火災や煙が発生する!

- ▶ インバータ(例:外部入力)で故障(異常)を取り込みます。
- ▶ 入力電圧(例:遮断器)をオフにします。
- ▶ 温度監視を行わない制動抵抗器の接続例 =>「制動抵抗器の取付手順」を参照してください。



▶「制動抵抗器の取付手順」を参照してください。

 $www.keb.de/fileadmin/media/Manuals/dr/ma_dr_braking-resistors-20116737_en.pdf$

4.2.7 強制冷却ファン用電源接続

4.3 オプション

4.3.1 EMCラインフィルタとACリアクトル

電圧クラス	インバータサイズ	EMCラインフィルタ	ACリアクトル 50Hz/4% (一次側)
400 V	27	27E6T60-300028E6T60-115028E4T60-100128U5A0W-3000	27Z1B04-1000
	28	28E6T60-115028E4T60-100128U5A0W-3000	28Z1B04-1000
	29	• 30E6T60-1150 • 30E4T60-1001 • 30U5A0W-3000	29Z1B04-1000
	30	30E6T60-115030E4T60-100130U5A0W-3000	30Z1B04-1000
表34: EMCラインフィ	ルタとACリアクトル		

EMCラインフィルタとACリアクトルは、定格運転用に設計されています。

4.3.2 スルーマウントヒートシンクIP54対応用密閉シール

名前	製品番号
IP54対応密閉シール	80F6T45-0001
表35: スルーマウントヒートシンクIP54対応用密閉シール	

4.3.3 冷却システムへの接続

名前	製品番号
冷却システム継手接続用ナット(ソフトシール付リング内蔵)	0000651-FM15
表36: 冷却システムへの接続	

4.3.4 サイドマウント式制動抵抗器

制動抵抗器の情報は、下記を参照してください。 www.keb.de/fileadmin/media/Manuals/dr/ma_dr_brakingresistors-20116737_en.pdf

5 認定

5.1 CEマーク

CEマークの付いたインバータは、低電圧指令およびEMC指令に適合した設計、製作を行っています。また、関連する規格EN 61800-5-1ならびにEN 61800-3にも対応しています。

CE適合宣言の詳細については、「5.3 詳細情報とドキュメント」を参照してください。

5.2 UL認証

- In preparation -

5.3 詳細情報とドキュメント

下記の取扱説明書については、www.keb.de/service/downloadsからダウンロードできます。

一般的な手順

- EMCおよび安全上の注意
- 追加の制御カード、安全機能、フィールドバスモジュールなどの取扱説明書

構築および開発の手順

- UL規格に準拠した入力ヒューズ
- 制御および主回路取扱説明書
- 適切なインバータを選定し、ダウンロードパラメータを作成するためのモータコンフィギュレータ

承認と認可

- CE適合宣言
- TÜV認証
- FS認証

その他

- PCをインバータに接続し、パラメータの読み書きができる専用ソフトウェア COMBIVIS 6 (ダウンロード毎に利用可能)
- EPLAN図面

6 変更履歴

バージョン	日付	説明
00	2017-08	Creation of a prototype.
00	2018-05	Creation of the pre-series manual.
01 201	2019-01	Changes of technical data.
01	2019-01	Figures of the overload characteristics adapted.
02	2020-08	Changes of technical data. Change of overload characteristics, editorial changes.
03	2021-08	Drawings, technical data updated.

NOTES

Austria | KEB Automation GmbH Ritzstraße 8 4614 Marchtrenk Austria Tel: +43 7243 53586-0 Fax: +43 7243 53586-21 E-Mail: info@keb.at Internet: www.keb.at

Benelux | KEB Automation KG

Dreef 4 - box 4 1703 Dilbeek Belgium

Tel: +32 2 447 8580

E-Mail: info.benelux@keb.de Internet: www.keb.de

Brazil | KEB South America - Regional Manager Rua Dr. Omar Pacheco Souza Riberio, 70 CEP 13569-430 Portal do Sol, São Carlos Brazil Tel: +55 16 31161294 E-Mail: roberto.arias@keb.de

Czech Republic | KEB Automation GmbH Videnska 188/119d 61900 Brno Czech Republic Tel: +420 544 212 008 E-Mail: info@keb.cz Internet: www.keb.cz

France | Société Française KEB SASU

Z.I. de la Croix St. Nicolas 14, rue Gustave Eiffel

94510 La Queue en Brie France

Tel: +33 149620101 Fax: +33 145767495

E-Mail: info@keb.fr Internet: www.keb.fr

Germany | Geared Motors

KEB Antriebstechnik GmbH
Wildbacher Straße 5 08289 Schneeberg Germany
Telefon +49 3772 67-0 Telefax +49 3772 67-281
Internet: www.keb-drive.de E-Mail: info@keb-drive.de

Italy | KEB Italia S.r.I. Unipersonale
Via Newton, 2 20019 Settimo Milanese (Milano) Italia
Tel: +39 02 3353531 Fax: +39 02 33500790
E-Mail: info@keb.it Internet: www.keb.it

Japan | KEB Japan Ltd.
711-103 Fukudayama, Fukuda
Shinjo-shi, Yamagata 996-0053 Japan
Tel: +81 0233 29-2800 Fax:+81 0233-29-2802
E-Mail: info@keb.jp Internet: www.keb.jp

P. R. China | KEB Power Transmission Technology (Shanghai) Co. Ltd.
No. 435 QianPu Road Chedun Town Songjiang District
201611 Shanghai P.R. China
Tel: +86 21 37746688 Fax: +86 21 37746600
E-Mail: info@keb.cn Internet: www.keb.cn

Poland | KEB Automation KG

Tel: +48 60407727

E-Mail: roman.trinczek@keb.de Internet: www.keb.de

Republic of Korea | KEB Automation KG

Deoksan-Besttel 1132 ho Sangnam-ro 37

Seongsan-gu Changwon-si Gyeongsangnam-do Republic of Korea
Tel: +82 55 601 5505 Fax: +82 55 601 5506

E-Mail: jaeok.kim@keb.de Internet: www.keb.de

Spain | KEB Automation KG
c / Mitjer, Nave 8 - Pol. Ind. LA MASIA
08798 Sant Cugat Sesgarrigues (Barcelona) Spain
Tel: +34 93 8970268 Fax: +34 93 8992035 E-Mail: vb.espana@keb.de

SwitzerlandKEB Automation AGWitzbergstrasse 248330 Pfaeffikon/ZHSwitzerlandTel: +41 43 2886060Fax: +41 43 2886088E-Mail: info@keb.chInternet: www.keb.ch

United Kingdom | KEB (UK) Ltd.

5 Morris Close | Park Farm Indusrial Estate
Wellingborough, Northants, NN8 6 XF | United Kingdom
Tel: +44 1933 402220 | Fax: +44 1933 400724
E-Mail: info@keb.co.uk | Internet: www.keb.co.uk

United States | KEB America, Inc
5100 Valley Industrial Blvd. South
Shakopee, MN 55379 United States
Tel: +1 952 2241400 Fax: +1 952 2241499
E-Mail: info@kebamerica.com Internet: www.kebamerica.com

Automation with Drive

KEB Automation KG

Suedstrasse 38 32683 Barntrup Germany

TEL: +49 / 5263 / 401-0 • FAX: +49/5263/401-116

URL: www.keb-automation.com • E-mail: info@keb.de

ケーイービー・ジャパン株式会社

本社:〒996-0053 山形県新庄市大字福田字福田山 711 番地 103

TEL: 0233-29-2800 FAX: 0233-29-2802